首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are a class of RNAs that play important regulatory roles in the cell. The detection of microRNA has attracted significant interest recently, as abnormal miRNA expression has been linked to cancer and other diseases. Here, we present a straightforward method for isothermal amplified detection of miRNA that involves two separate nucleic acid-templated chemistry steps. The miRNA first templates the cyclization of an oligodeoxynucleotide from a linear precursor containing a 5'-iodide and a 3'-phosphorothioate. The sequence is amplified through rolling circle amplification with 29 DNA polymerase and then detected via a second amplification using fluorogenic templated probes. Tests showed that the cyclization proceeds in ~50% yield over 24 h and is compatible with the conditions required for rolling circle polymerization, unlike enzymatic ligations which required non-compatible buffer conditions. The polymerization yielded 188-fold amplification, and separate experiments showed ~15-fold signal amplification from the templated fluorogenic probes. When all components are combined, results show miRNA detection down to 200 pM in solution, and correlation of the detected signal with the initial concentration of miRNA. The doubly templated double-amplification method demonstrates a new approach to detection of rolling circle products and significant advantages in ease of operation for miRNA detection.  相似文献   

2.
A new method of membrane-bound DNA × DNA hybridization was devised to accommodate the study of small quantities of DNA obtained from museum specimens for phylogeny reconstruction. Membranebound, single-stranded target genomic DNAs were competitively hybridized with a total genomic DNA probe to form hybrid duplexes required for the DNA dissociation experiments. We compared the thermal elution profiles derived from dissociating duplexes made with probes of whole genomic, single-copy, and repetitive DNA, as well as solution DNA × DNA hybridization using sc tracer. Quantitatively, pairwise indices of genetic distance derived from duplexes made with genomic probes depended entirely on hybridization of repetitive sequences, but a parallel set of experiments using repetitive and sc probes produced qualitatively similar results. The indices of genetic distance generated by the membrane-bound hybrids form an internally consistent, resolved tree which is in agreement with the solution DNA × DNA hybridization trials and traditional views of the phylogeny of the taxa under study.Correspondence to: P. Houde  相似文献   

3.
DNA templated fluorogenic reactions have been used as a diagnostic tool for the sequence specific detection of nucleic acids; and it has been shown that the native chemical ligation between thioester- and 1,2-aminothiol-modified PNA probes is amongst the most selective DNA detection methods reported. We explored whether a DNA templated reaction can be interfaced with the polymerase chain reaction (PCR). This endeavor posed a significant challenge. The reactive groups involved must be sufficiently stable to tolerate the high temperature applied in the PCR process. Nevertheless, the ligation reaction must proceed very rapidly and sequence specifically within the short time available in the annealing and primer extension steps before denaturation is used after approx. 1 min to commence the next PCR cycle. This required a careful optimization of the ternary complex architecture as well as adjustments of probe length and probe reactivities. Our results point to the prime importance of the ligation architecture. We show that once suitable annealing sites have been identified less reactive probe sets may be preferable if sequence specificity is of major concern. The reactivity tuning enabled the development of an in-PCR ligation, which was used for the single nucleotide specific typing of the V600E (T1799A) point mutation in the human BRaf gene. Showcasing the efficiency and sequence specificity of native chemical PNA ligation, attomolar template proofed sufficient to trigger signal while a 1000-fold higher load of single mismatched template failed to induce appreciable signal.  相似文献   

4.
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at “hotspot” regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.  相似文献   

5.
 This study has analyzed the molecular basis and genetic behaviour of the polymorphism generated by the amplification of barley genomic DNA with primers complementary to microsatellites. Primers anchored at the 5′ end, used alone or in combination with arbitrary sequence primers, generated random amplified microsatellite polymorphisms (RAMPs). Unanchored primers were also used as single primers in a microsatellite primed-PCR (MP-PCR). Twenty six randomly selected RAMP DNA fragments which showed polymorphism between the cultivars Steptoe and Morex were cloned and sequenced. All sequences showed the expected repeated motif at the end of the insert, with the number of repeats ranging from five to ten. Genomic sequences containing low numbers of microsatellite motifs were preferentially amplified; therefore, only a fraction of the polymorphism could be attributed to variation in the number of microsatellite motifs at the priming site. Some sequences contained either cryptic simple sequences or members of families of repeated DNA. Polymorphism at the internal cryptic simple sequences was detected by RAMP bands inherited as co-dominant markers. Four MP-PCR bands were cloned and sequenced. A number of repeats identical to the primer itself were found at each end of the insert. Two allelic bands were polymorphic for an internal microsatellite. The potential use of cloned bands as fingerprinting tools was investigated by employing them as hybridization probes in Southern blots containing digested barley DNA from a sample of cultivars. RAMP probes produced complex hybridization band patterns. MP-PCR probes produced either a highly variable single locus or low-copy number loci. Segregations for 31 RAMPs and three MP-PCR bands were studied in a population of 70 doubled-haploids from the Steptoe/Morex cross. One third of all markers were co-dominantly inherited. Markers were positioned on an RFLP map and found to be distributed in all barley chromosomes. The new markers enlarged the overall length of the map to 1408 cM. Received: 6 May 1998 / Accepted: 20 July 1998  相似文献   

6.
Recent nuclear transfer of organellar DNA is thought to result mainly in nonfunctional nuclear sequences or in genetic dysfunction. Here we show that nuclear exons encoding novel protein sequences can be generated by insertions of organellar DNA. Most of the protein sequences do not correspond to preexisting organellar coding sequences or they represent markedly reshaped protein domains, reflecting the recruitment and adaptation of encoded proteins to new functions. Organelle-derived DNA insertions might be responsible for many more ancient functional exon acquisitions that are not directly detectable.  相似文献   

7.
8.
It has been widely considered that DNA modification protects the chromosome of bacteria E. coli K-12 against their own restriction-modification systems. Chromosomal DNA is protected from degradation by methylation of target sequences. However, when unmethylated target sequences are generated in the host chromosome, the endonuclease activity of the EcoKI restriction-modification enzyme is inactivated by the ClpXP protease and DNA is protected. This process is known as restriction alleviation (RA) and it can be induced by UV irradiation (UV-induced RA). It has been proposed that chromosomal unmethylated target sequences, a signal for the cell to protect its own DNA, can be generated by homologous recombination during the repair of damaged DNA. In this study, we wanted to further investigate the genetic requirements for recombination proteins involved in the generation of unmethylated target sequences. For this purpose, we monitored the alleviation of EcoKI restriction by measuring the survival of unmodified lambda in UV-irradiated cells. Our genetic analysis showed that UV-induced RA is dependent on the excision repair protein UvrA, the RecA-loading activity of the RecBCD enzyme, and the primosome assembly activity of the PriA helicase and is partially dependent on RecFOR proteins. On the basis of our results, we propose that unmethylated target sequences are generated at the D-loop by the strand exchange of two hemi-methylated duplex DNAs and subsequent initiation of DNA replication.  相似文献   

9.
DNA biochip technology holds potential for highly parallel, rapid, and sensitive genetic diagnostic screening of target pathogens and disease biomarkers. A primary limitation involves a simultaneous, sequence-specific identification of low copy number target polynucleotides using a clinically appropriate detection methodology that implements only inexpensive detection instrumentation. Here, a rapid (20 min), nonenzymatic method of signal amplification utilizing surface-initiated photopolymerization is presented in glass microarray format. Visible light photoinitiators covalently coupled to streptavidin were used to bind biotin-labeled capture sequences. Amplification was achieved through subsequent contact with a monomer solution and the appropriate light exposure to generate 20-240-nm-thick hydrogel layers exclusively from spots containing the biotin-labeled DNA. An amplification factor of 10(6) to 10(7) was observed as well as a detectable response generated from as low as approximately 10(4) labeled oligonucleotides using minimal instrumentation, such as an optical microscope or CCD camera.  相似文献   

10.
A. R. Lohe  A. J. Hilliker    P. A. Roberts 《Genetics》1993,134(4):1149-1174
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.  相似文献   

11.
We have developed a reduction-triggered fluorescence probe with a new fluorogenic compound derivatized from Rhodamine for sensing oligonucleotides. The chemistry to activate the compound involves the reaction between the azide group of rhodamine derivatives and the reducing reagents, with the fluorescence signal appearing after reduction of the azide group. The signal/background ratio of this fluorogenic compound reached 2100-fold enhancement in fluorescence intensity. Dithio-1,4-threitol or triphenylphosphine as reducing reagents were successfully utilized for this chemistry to be introduced into the DNA probe. The genetic detection requires that two strands of DNA bind onto target oligonucleotides, one probe carrying a reducible fluorogenic compound while the other carries the reducing reagents. The reaction proceeds automatically without any enzymes or reagents under biological conditions to produce a fluorescence signal within 10-20 min in the presence of target DNA or RNA. In addition, the probe was very stable under biological conditions, even such extreme conditions as pH 5 solution, pH 10 solution, or high temperature (90 degrees C) with no undesirable background signal. The probes were successfully applied to the detection of oligonucleotides at the single nucleotide level in solution and endogenous RNA in bacterial cells.  相似文献   

12.
DNA fingerprinting of Rattus norvegicus: a new approach in genetic analysis   总被引:1,自引:0,他引:1  
Recent finding in highly effective DNA probes for RFLP testing (of hypervariable minisatellite DNA type) has led to the invention of DNA fingerprinting--the new technique of great value for identification of individuals, establishing biological kinship and studies in population genetics. We anticipate that DNA fingerprinting procedure with M13 phage DNA as a probe which we have developed earlier, makes it possible to apply new approach in genetic analysis--establishing, whether or not a particular locus is associated with the inheritance of genetic disease, by comparing the whole restriction fragment data from affected and unaffected animals. In this work, using the method described we characterized the Kroushynsky-Molodkina rat strain with hereditary disposition for epileptic attacks and performed comparative fingerprint analysis of these defective and normal rat genomes. The data obtained may hold some promises for further seeking the particular defective gene.  相似文献   

13.
DNA methylation, an important type of epigenetic modification in humans, participates in crucial cellular processes, such as embryonic development, X-inactivation, genomic imprinting and chromosome stability. Several platforms have been developed to study genome-wide DNA methylation. Many investigators in the field have chosen the Illumina Infinium HumanMethylation microarray for its ability to reliably assess DNA methylation following sodium bisulfite conversion. Here, we analyzed methylation profiles of 489 adult males and 357 adult females generated by the Infinium HumanMethylation450 microarray. Among the autosomal CpG sites that displayed significant methylation differences between the two sexes, we observed a significant enrichment of cross-reactive probes co-hybridizing to the sex chromosomes with more than 94% sequence identity. This could lead investigators to mistakenly infer the existence of significant autosomal sex-associated methylation. Using sequence identity cutoffs derived from the sex methylation analysis, we concluded that 6% of the array probes can potentially generate spurious signals because of co-hybridization to alternate genomic sequences highly homologous to the intended targets. Additionally, we discovered probes targeting polymorphic CpGs that overlapped SNPs. The methylation levels detected by these probes are simply the reflection of underlying genetic polymorphisms but could be misinterpreted as true signals. The existence of probes that are cross-reactive or of target polymorphic CpGs in the Illumina HumanMethylation microarrays can confound data obtained from such microarrays. Therefore, investigators should exercise caution when significant biological associations are found using these array platforms. A list of all cross-reactive probes and polymorphic CpGs identified by us are annotated in this paper.  相似文献   

14.
Ooi AT  Stains CI  Ghosh I  Segal DJ 《Biochemistry》2006,45(11):3620-3625
This work describes the development of a new methodology for the detection of specific double-stranded DNA sequences. We previously showed that two inactive fragments of green fluorescent protein, each coupled to engineered zinc finger DNA-binding proteins, were able to reassemble an active reporter complex in the presence of a predefined DNA sequence. This system, designated sequence-enabled reassembly (SEER), was demonstrated in vitro to produce a DNA-concentration-dependent signal. Here we endow the SEER system with catalytic capability using the reporter enzyme TEM-1 beta-lacatamase. This system could distinguish target DNA from nontarget DNA in less than 5 min, representing a more than 1000-fold improvement over our previous SEER design. A single base-pair substitution in the DNA binding sequence reduced the signal to nearly background levels. Substitution of a different custom zinc finger DNA-binding domain produced a signal only on the new cognate target. Signal intensity was not affected by genomic DNA when present in equal mass to the target DNA. These results present SEER as a rapid and sensitive method for the detection of double-stranded DNA sequences.  相似文献   

15.
MOTIVATION: With hundreds of completely sequenced microbial genomes available, and advancements in DNA microarray technology, the detection of genes in microbial communities consisting of hundreds of thousands of sequences may be possible. The existing strategies developed for DNA probe design, geared toward identifying specific sequences, are not suitable due to the lack of coverage, flexibility and efficiency necessary for applications in metagenomics. METHODS: ProDesign is a tool developed for the selection of oligonucleotide probes to detect members of gene families present in environmental samples. Gene family-specific probe sequences are generated based on specific and shared words, which are found with the spaced seed hashing algorithm. To detect more sequences, those sharing some common words are re-clustered into new families, then probes specific for the new families are generated. RESULTS: The program is very flexible in that it can be used for designing probes for detecting many genes families simultaneously and specifically in one or more genomes. Neither the length nor the melting temperature of the probes needs to be predefined. We have found that ProDesign provides more flexibility, coverage and speed than other software programs used in the selection of probes for genomic and gene family arrays. AVAILABILITY: ProDesign is licensed free of charge to academic users. ProDesign and Supplementary Material can be obtained by contacting the authors. A web server for ProDesign is available at http://www.uhnresearch.ca/labs/tillier/ProDesign/ProDesign.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

16.
Z Zhu  J Chao  H Yu    A S Waggoner 《Nucleic acids research》1994,22(16):3418-3422
Directly labeled fluorescent DNA probes have been made by nick translation and PCR using dUTP attached to the fluorescent label, Cy3, with different length linkers. With preparation of probes by PCR we find that linker length affects the efficiency of incorporation of Cy3-dUTP, the yield of labeled probe, and the signal intensity of labeled probes hybridized to chromosome target sequences. For nick translation and PCR, both the level of incorporation and the hybridization fluorescence signal increased in parallel when the length of the linker arm is increased. Under optimal conditions, PCR yielded more densely labeled probes, however, the yield of PCR labeled probe decreased with greater linear density of labeling. By using a Cy3-modified dUTP with the longest linker under optimal conditions it was possible to label up to 28% of the possible substitution sites on the target DNA with reasonable yield by PCR and 18% by nick translation. A mechanism involving steric interactions between the polymerase, cyanine-labeled sites on template and extending chains and the modified dUTP substrate is proposed to explain the inverse correlation between the labeling efficiency and the yield of DNA probe synthesis by PCR.  相似文献   

17.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

18.
We examined genetic diversity and relationships among 24 cultivated and wild Amaranthus accessions using the total low-Cot DNA and five individual repetitive sequences as probes. These low-Cot DNA probes were obtained by the isolation of various classes of repetitive-DNA sequences, including satellites, minisatellites, microsatellites, rDNA, retrotransposon-like sequences, and other unidentified novel repetitive sequences. DNA fingerprints generated by different types of repetitive-DNA probes revealed different levels of polymorphism in the Amaranthus genomes. A repetitive sequence containing microsatellites was found to be a suitable probe for characterizing intraspecific accessions, whereas more conservative sequences (e.g. rDNA) were informative for resolving phylogenetic relationships among distantly related species.Genetic diversity, measured as restriction fragment length polymorphism (RFLP) and the similarity index at the low-Cot DNA level, was equally high among intraspecific accessions between the two species groups: grain amaranths (A. caudatus, A. cruentus, and A. hypochondriacus) and their putative wild progenitors (A. hybridus, A. powellii, and A. quitensis). At the interspecific level, however, the grain amaranth species are less divergent from each other than their wild progenitors. With the rare exceptions of certain A. caudatus accessions, grain amaranths were found to be closely related to A. hybridus. The results based on low-Cot DNA were comparable with previous RAPD and isozyme studies of the same set of species/accessions of Amaranthus, indicating that low-Cot DNA sequences are suitable probes for a fingerprinting analysis of plant germplasm diversity and for determining phylogenetic relationships. Received: 19 October 1998 / Accepted: 8 January 1999  相似文献   

19.
Structure and evolution of the genomes ofsorghum bicolor andZea mays   总被引:1,自引:0,他引:1  
Cloned maize genes and random maize genomic fragments were used to construct a genetic map of sorghum and to compare the structure of the maize and sorghum genomes. Most (266/280) of the maize DNA fragments hybridized to sorghum DNA and 145 of them detected polymorphisms. The segregation of 111 markers was analyzed in 55 F2 progeny. A genetic map was generated with 96 loci arranged in 15 linkage groups spanning 709 map units. Comparative genetic mapping of sorghum and maize is complicated by the fact that many loci are duplicated, often making the identification of orthologous sequences ambiguous. Relative map positions of probes which detect only a single locus in both species indicated that multiple rearrangements have occurred since their divergence, but that many chromosomal segments have conserved synteny. Some sorghum linkage groups were found to be composed of sequences that detect loci on two different maize chromosomes. The two maize chromosomes to which these loci mapped were generally those which commonly share duplicated sequences. Evolutionary models and implications are discussed.  相似文献   

20.
Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号