首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.  相似文献   

2.
3.
The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.  相似文献   

4.
5.
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.  相似文献   

6.
7.
AHL-lactonase (AiiA), a metallo-beta-lactamase produced by Bacillus thuringiensis, Bacillus cereus and Bacillus anthracis, specifically hydrolyzes N-acyl-homoserine lactones (AHLs) secreted by Gram-negative bacteria and thereby attenuates the symptoms caused by plant pathogens. In this study, an aiiA gene was cloned from Bacillus subtilis BS-1 by PCR with a pair of degenerate primers. The deduced 250 amino acid sequence contained two small conserved regions, 103SHLHFDH109 and 166TPGHTPGH173, which are characteristic of the metallo-beta-lactamase family. Homology comparison revealed that the deduced amino acid sequence had a high degree of similarity with those of the known AiiA proteins in the B. cereus group. Additionally, the aiiA gene was expressed in Escherichia coli BL21 (DE3) pLysS and the expressed AiiA protein could attenuate the soft rot symptoms caused by Erwinia carotovora var. carotovora.  相似文献   

8.
9.
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.  相似文献   

10.
We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.  相似文献   

11.
The genome of Bacillus cereus contains 26 Nudix hydrolase genes, second only to its closest relative, Bacillus anthracis which has 30. All 26 genes have been cloned, 25 have been expressed, and 21 produced soluble proteins suitable for analysis. Substrates for 16 of the enzymes were identified; these included ADP-ribose, diadenosine polyphosphates, sugar nucleotides, and deoxynucleoside triphosphates. One of the enzymes was a CDP-choline pyrophosphatase, the first Nudix hydrolase active on this substrate. Furthermore, as a result of this and previous work we have identified a new sub-family of the Nudix hydrolase superfamily recognizable by a specific amino acid motif outside of the Nudix box.  相似文献   

12.
Aims:  In order to improve the diagnosis of Bacillus anthracis in environmental samples, we established a DNA microarray based on the ArrayTube technology of Clondiag.
Methods and Results:  Total DNA of a bacterial colony is randomly biotinylated and hybridized to the array. The probes on the array target the virulence genes, the genomic marker gene rpoB , as well as the selective 16S rDNA sequence regions of B. anthracis , of the Bacillus cereus group and of Bacillus subtilis . Eight B. anthracis reference strains were tested and correctly identified. Among the analysed environmental Bacillus isolates, no virulent B. anthracis strain was detected.
Conclusions:  This array clearly differentiates B. anthracis from members of the B. cereus group and other Bacillus species in environmental samples by chromosomal ( rpoB ) and plasmid markers. Additionally, recognition of B. cereus strains harbouring the toxin genes or atypical B. anthracis strains that have lost the virulence plasmids is feasible.
Significance and Impact of the Study:  The array is applicable to the complex diagnostics for B. anthracis detection in environmental samples. Because of low costs, high security and easy handling, the microarray is applicable to routine diagnostics.  相似文献   

13.
Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.  相似文献   

14.
炭疽芽胞杆菌(Bacillus anthracis)、蜡样芽胞杆菌(B. cereus)和苏云金芽胞杆菌(B. thuringiensis)均属于蜡样芽胞杆菌群,在遗传学上有很高的相似性。PlcR (Phospholipase C regulator)在蜡样芽胞杆菌中是十分重要的调控因子,但plcR基因在炭疽芽胞杆菌中发生一个无义突变导致在炭疽芽胞杆菌中产生一个截短PlcR蛋白。为了研究plcR基因对炭疽芽胞杆菌功能的影响,文章以蜡样芽胞杆菌CMCC6330基因组为模板,构建重组表达质粒pBE2A-plcR后导入炭疽芽胞杆菌疫苗株A16R中获得重组菌株,对其进行表型分析。结果显示,炭疽芽胞杆菌重组菌株的溶血活性基本没有恢复,但恢复了部分神经鞘磷脂酶活性,表明将蜡样芽胞杆菌的plcR基因导入炭疽芽胞杆菌后,可以直接激活神经鞘磷脂酶活性。  相似文献   

15.
Bacillus cereus strains that are genetically closely related to B. anthracis can display anthrax-like virulence traits (A. R. Hoffmaster et al., Proc. Natl. Acad. Sci. USA 101:8449-8454, 2004). Hence, approaches that rapidly identify these "near neighbors" are of great interest for the study of B. anthracis virulence mechanisms, as well as to prevent the use of such strains for B. anthracis-based bioweapon development. Here, a strategy is proposed for the identification of near neighbors of B. anthracis based on single nucleotide polymorphisms (SNP) in the 16S-23S rRNA intergenic spacer (ITS) containing tRNA genes, characteristic of B. anthracis. By using restriction site insertion-PCR (RSI-PCR) the presence of two SNP typical of B. anthracis was screened in 126 B. cereus group strains of different origin. Two B. cereus strains and one B. thuringiensis strain showed RSI-PCR profiles identical to that of B. anthracis. The sequencing of the entire ITS containing tRNA genes revealed two of the strains to be identical to B. anthracis. The strict relationship with B. anthracis was confirmed by multilocus sequence typing (MLST) of four other independent loci: cerA, plcR, AC-390, and SG-749. The relationship to B. anthracis of the three strains described by MLST was comparable and even higher to that of four B. cereus strains associated with periodontitis in humans and previously reported as the closest known strains to B. anthracis. SNP in ITS containing tRNA genes combined with RSI-PCR provide a very efficient tool for the identification of strains closely related to B. anthracis.  相似文献   

16.
17.
18.
The identification of a region of sequence variability among individual isolates of Bacillus anthracis as well as the two closely related species, Bacillus cereus and Bacillus mycoides, has made a sequence-based approach for the rapid differentiation among members of this group possible. We have identified this region of sequence divergence by comparison of arbitrarily primed (AP)-PCR "fingerprints" generated by an M13 bacteriophage-derived primer and sequencing the respective forms of the only polymorphic fragment observed. The 1,480-bp fragment derived from genomic DNA of the Sterne strain of B. anthracis contained four consecutive repeats of CAATATCAACAA. The same fragment from the Vollum strain was identical except that two of these repeats were deleted. The Ames strain of B. anthracis differed from the Sterne strain by a single-nucleotide deletion. More than 150 nucleotide differences separated B. cereus and B. mycoides from B. anthracis in pairwise comparisons. The nucleotide sequence of the variable fragment from each species contained one complete open reading frame (ORF) (designated vrrA, for variable region with repetitive sequence), encoding a potential 30-kDa protein located between the carboxy terminus of an upstream ORF (designated orf1) and the amino terminus of a downstream ORF (designated lytB). The sequence variation was primarily in vrrA, which was glutamine- and proline-rich (30% of total) and contained repetitive regions. A large proportion of the nucleotide substitutions between species were synonymous. vrrA has 35% identity with the microfilarial sheath protein shp2 of the parasitic worm Litomosoides carinii.  相似文献   

19.
The primary structures of the 23S ribosomal RNA genes of Bacillus anthracis and an emetic strain of Bacillus cereus were determined by direct sequencing of enzymatically amplified chromosomal DNA. The 23S rRNA gene sequences of B. anthracis and B. cereus were found to be almost identical and showed only two differences (a single nucleotide change, and a single base insertion in B. cereus). The feasibility of using PCR-direct sequencing for the rapid sequence determination of large-subunit rRNA genes is demonstrated.  相似文献   

20.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号