首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A biomarker is defined as "a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or biological responses to a therapeutic intervention". Biomarkers can be utilized to detect disease, evaluate treatment risks, or determine treatment effectiveness. In the case of cancer, anthracyclines such as doxorubicin are front-line therapy to treat a number of different malignancies including breast cancer. However, a significant fraction of patients experience drug-induced cardiotoxicity. This toxicity is dose-limiting and can cause long-term morbidity or mortality. There is an unmet medical need to identify patients who are at risk for doxorubicin-induced cardiotoxicity, to detect cardiac damage early so that patient risk can be minimized, and to monitor the success of cardioprotective strategies. Therefore, doxorubicin treatment of cancer is an excellent example of the need for biomarkers to indicate drug safety in addition to drug efficacy. In this review we will discuss the mechanism of doxorubicinassociated cardiotoxicity, as well as other cancer therapies that induce cardiac toxicity by causing oxidative damage. We will also evaluate established and proposed biomarkers for cardiotoxicity based on our evolving knowledge of oxidative damage and subsequent autophagy. Finally, we will discuss advantages of combining oxidative damage- and autophagy-based protein biomarkers with current biomarkers such as troponins to facilitate early detection and mitigation of cardiotoxicity induced by cancer therapeutic agents.  相似文献   

2.
Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels.  相似文献   

3.
Biomarker discovery and validation: technologies and integrative approaches   总被引:4,自引:0,他引:4  
The emerging field of biomarkers has applications in the diagnosis, staging, prognosis and monitoring of disease progression, as well as in the monitoring of clinical responses to a therapeutic intervention and the development and delivery of personalized treatments to reduce attrition in clinical trials. Moreover, biomarkers have a positive impact on health economics. The word "biomarker" has been used extensively across therapeutic areas and many disciplines, and its nature takes into consideration clinical, physiological, biochemical, developmental, morphological and molecular measures. In drug trials, biomarkers have been proposed for use in efficacy determination and patient population stratification, in deducing pharmacokinetic-pharmacodynamic relationships and in safety monitoring. The interfacing and integration of different technologies for data collection and analysis are pivotal to biomarker identification, characterization, validation and application. "Integrative functional informatics" represents a novel direction in such technology integration.  相似文献   

4.
Alzheimer disease is the most common cause of dementia, yet its clinical diagnosis remains uncertain until an eventual postmortem histopathology examination. Currently, therapy for patients with Alzheimer disease only treats the symptoms; however, it is anticipated that new disease-modifying drugs will soon become available.Diagnostic tools for detecting Alzheimer disease at an incipient stage that can reliably differentiate the disease from other forms of dementia are of key importance for optimal treatment. Biomarkers have the potential to aid in a correct diagnosis, and great progress has been made in the discovery and development of potentially useful biomarkers in recent years. This includes single protein biomarkers in the cerebrospinal fluid, as well as multi-component biomarkers, and biomarkers based on gene expression. Novel biomarkers that use blood and urine, the more easily available clinical samples, are also being discovered and developed. The plethora of potential biomarkers currently being investigated may soon provide biomarkers that fulfill different functions, not only for diagnostic purposes but also for drug development and to follow disease progression.  相似文献   

5.
Rheumatoid arthritis is a heterogeneous disease with respect to clinical manifestations, serologic abnormalities, joint damage and functional impairment. Predicting outcome in a reliable way to allow for strategic therapeutic decision-making as well as for prediction of the response to the various therapeutic modalities available today, especially biological agents, would provide means for optimization of care. In the present article, the current information on biological and clinical markers related to disease activity and joint damage as well as for predictive purposes is reviewed. It will be shown that the relationship of many biomarkers with disease characteristics is confounded by factors unrelated to the disease, and that only few biomarkers exist with some predictive value. Moreover, clinical markers appear of equal value as biomarkers for this purpose, although they likewise have limited capacity in these regards. The analysis suggests the search for better markers to predict outcomes and therapeutic responsiveness in rheumatoid arthritis needs to be intensified.  相似文献   

6.
Targeted therapy directed against oncogenic BRAF mutations and immune checkpoint inhibitors have transformed melanoma therapy over the past decade and prominently improved patient outcomes. However, not all patients will respond to targeted therapy or immunotherapy and many relapse after initially responding to treatment. This unmet need presents two major challenges. First, can we elucidate novel oncogenic drivers to provide new therapeutic targets? Second, can we identify patients who are most likely to respond to current therapeutic strategies in order to both more accurately select populations and avoid undue drug exposure in patients unlikely to respond? In an effort to evaluate the current state of the field with respect to these questions, we provide an overview of some common oncogenic mutations in patients with metastatic melanoma and ongoing efforts to therapeutically target these populations, as well as a discussion of biomarkers for response to immune checkpoint inhibitors—including tumor programmed death ligand 1 expression and the future use of neoantigens as a means of truly personalized therapy. This information is becoming important in treatment decision making and provides the framework for a treatment algorithm based on the current landscape in metastatic melanoma.  相似文献   

7.
Motor neuron diseases (MNDs) and, in particular, amyotrophic lateral sclerosis (ALS), are a heterogeneous group of neurologic disorders characterized by the progressive loss of motor function. In ALS, a selective and relentless degeneration of both upper and lower motor neurons occurs, culminating in mortality typically within 5 years of symptom onset. However, survival rates vary among individual patients and can be from a few months to >10 years from diagnosis. Inadequacies in disease detection and treatment, along with a lack of diagnostic and prognostic tools, have prompted many to turn to proteomics-based biomarker discovery efforts. Proteomics refers to the study of the proteins expressed by a genome at a particular time, and the proteome can respond to and reflect the status of an organism, including health and disease states. Although an emerging field, proteomic applications promise to uncover biomarkers critical for differentiating patients with ALS and other MNDs from healthy individuals and from patients affected by other diseases. Ideally, these studies will also provide mechanistic information to facilitate identification of new drug targets for subsequent therapeutic development. In addition to proper experimental design, standard operating procedures for sample acquisition, preprocessing, and storage must be developed. Biological samples typically analyzed in proteomic studies of neurologic diseases include both plasma and cerebrospinal fluid (CSF). Recent studies have identified individual proteins and/or protein panels from blood plasma and CSF that represent putative biomarkers for ALS, although many of these proteins are not unique to this disease. Continued investigations are required to validate these initial findings and to further pursue the role of these proteins as diagnostic biomarkers or surrogate markers of disease progression. Protein biomarkers specific to ALS will additionally function to evaluate drug efficacy in clinical trials and to identify novel targets for drug design. It is hoped that proteomic technologies will soon integrate the basic biology of ALS with mechanistic disease information to achieve success in the clinical setting.  相似文献   

8.
新冠病毒引发的急性呼吸道传染病造成了全球大流行的新冠肺炎,严重危害世界公共卫生安全,迫切需要研发有效治疗新冠肺炎的药物。综述了疫情暴发初期抗新冠肺炎药物研发的进展,重点介绍“老药新用”、小分子及抗体创新药物研发和中药等。通过“老药新用”研究发现多个老药具有抑制新冠病毒复制作用,其中瑞德西韦、法匹拉韦、氯喹和羟氯喹等进入临床研究,尤其是瑞德西韦成为被美国FDA批准用于新冠肺炎治疗的首个药物。针对新冠病毒识别宿主细胞受体的S蛋白开展的抗体发现和靶向3CL蛋白酶及RNA依赖的RNA聚合酶等新冠病毒复制过程中的关键蛋白质开展小分子抑制剂发现是抗新冠肺炎创新药物研究中的主要方向。此外,中药在防治新冠肺炎中发挥了重要作用,金花清感颗粒、莲花清瘟胶囊、血必净注射液、双黄连口服液、清肺排毒汤、化湿败毒方、宣肺败毒方等都进入了新冠肺炎治疗的临床研究及应用。  相似文献   

9.
This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson's disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined.  相似文献   

10.
Predictive biomarkers are discovered and used in oncology research to formulate hypotheses aimed at the identification of patients benefiting from specific therapeutic intervention(s). They pave the way to the development of companion diagnostic tests which are tools readily implemented in the clinic and serve to qualify a patient for treatment with a particular targeted drug or the continued use of a particular drug, thus maximizing the benefit to risk ratio of the medical intervention to the patient. Predictive biomarkers are defined by biological characteristics of the patient's or tumor status that can be measured objectively and correlated with clinical outcome: these can be molecular, cellular or biochemical features. Predictive markers need extensive analytical validation - specific for the tool utilized for their assessment - as well as rigorous clinical qualification in the context of the drug treatment for which they define clinical utility. The process of companion diagnostic development is a highly interdisciplinary and complex one, driven by key crucial milestones and accompanying the same and typical process of a whole drug discovery and development continuum, from marker discovery and validation, assay development, clinical qualification until test approval and commercialization.  相似文献   

11.
类风湿关节炎(RA)是全世界难治性自身免疫疾病,其治疗药物虽不断发展,但病灶药物浓度达不到有效水平导致药物疗效不理想或存在各种毒副反应,因此,基于新技术、新方法研究开发针对RA的安全、高效新型制剂是必要的.研究表明,纳米技术的运用可提高药物生物利用度,经皮给药可改善口服和注射带来的毒副作用.对近年来基于经皮给药系统治疗...  相似文献   

12.
This review addresses the challenges of neuroproteomics and recent progress in biomarkers and tests for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. The review will discuss how the application of quantitative 2D gel electrophoresis, combined with appropriate single-variable and multivariate biostatistics, allows for selection of disease-specific serum biomarkers. It will also address how the use of large cohorts of specifically targeted patient blood serum samples and complimentary age-matched controls, in parallel with the use of selected panels of these biomarkers, are being applied to the development of blood tests to specifically address unmet pressing needs in the differential diagnosis of these diseases, and to provide potential avenues for mechanism-based drug targeting and treatment monitoring. While exploring recent findings in this area, the review discusses differences in critical pathways of immune/inflammation and amyloid formation between Parkinson’s disease and amyotrophic lateral sclerosis, as well as discernable synergistic relationships between these pathways that are revealed by this approach. The potential for pathway measurement in blood tests for differential diagnosis, disease burden and therapeutic monitoring is also outlined.  相似文献   

13.
Greater understanding of the role played by human papillomavirus (HPV) in the causation of disease has led to the development of an increasing number of HPV tests with different characteristics. The bewildering choice facing healthcare professionals and providers is daunting. Clearly, HPV testing is no longer simply of research interest, but can provide information that can be used for individual patient management and at the population level for cervical screening and vaccine surveillance. This review aims to provide the background to the development of HPV tests, to explain the different technologies and to discuss the challenges of the application of these optimally in the varied contexts of disease management. Few HPV tests are approved for clinical use and it is important that clinicians understand which test can be utilized, in what circumstances, with what specimens and the meaning of the report issued. HPV testing is no longer applicable only to cervical disease, and we have suggested additional areas, such as the oropharynx, in which HPV testing services might be implemented in the near future. New tests will continue to emerge and we have identified some of the indirect measures of HPV activity, or biomarkers, that could help in the risk stratification of HPV infection and associated disease. The challenges relating to the optimal application of the various HPV technologies are compounded by the lack of evidence regarding their performance in vaccinated populations. Currently published work, including modelling studies, has been undertaken in non‐immunized populations. We therefore end by addressing the issues regarding appropriate strategies and tests for immunized populations.  相似文献   

14.
15.
16.
An important by-product of sequencing the human genome has been the development of a novel 'toolbox' for biomarker discovery and development. Genomic medicine is an emerging discipline in the genome sciences that integrates these tools to interrogate genomic variation in well-defined populations in order to develop predictors of disease susceptibility, progression and drug response. Several important classes of biomarkers result from these analyses which, when translated to clinical medicine and drug development, will have an important impact on human health and disease. This review highlights both the opportunities and challenges in bringing biomarkers into clinical medicine.  相似文献   

17.
18.
19.
20.
The aim of this review is to analyze how our knowledge on the etiology, pathology, and treatment of amyotrophic lateral sclerosis (ALS) has profited from the application of biotechnology tools for the identification of disease markers, the development of animal disease models, and the design of innovative therapeutics. In humans, ALS-specific clinical, genetic or protein biomarkers, or panels of biomarkers stemming from genomics and proteomics analyses can be critical for early diagnosis, monitoring of disease progression, drug validation in clinical trials, and identification of therapeutic targets for subsequent drug development. At the same time, animal models representing a number of human superoxide dismutase 1 mutations, intermediate-filament disorganization or axonal-transport defects have been invaluable in unraveling aspects of the pathophysiology of the disease; in each case, these only represent a small proportion of all ALS patients. Preclinical and clinical trials, although at present heavily concentrating on pharmacological approaches, are embracing the emerging alternative strategies of stem-cell and gene therapy. In combination with a further subcategorization of patients and the development of corresponding model systems for functional analyses, they will significantly influence the already changing face of ALS therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号