首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
N C Kaarsholm  H C Ko  M F Dunn 《Biochemistry》1989,28(10):4427-4435
The chromophoric divalent metal ion chelators 4-(2-pyridylazo)resorcinol (PAR) and 2,2',2"-terpyridine (terpy) are used as kinetic and spectroscopic probes to investigate in solution the SCN- -induced conformational transformations of the insulin, proinsulin, and miniproinsulin hexamers (miniproinsulin is a proinsulin analogue wherein the C-chain is replaced by a dipeptide cross-link between Gly-A1 and Ala-B30). Herein we designate the 2Zn and 4Zn crystal forms of the hexamer as the T6 and T3R3 conformations, respectively. For all three proteins, addition of SCN- reduces the rate of sequestering and removal of zinc ion by chelator. The effect of SCN- on the rate of this process saturates at the same concentration (30 mM) known to induce the T6 to T3R3 transformation in the insulin crystal. Under both T6 and T3R3 conditions, the critical stoichiometry for high-affinity interaction between Zn2+ and each of the three proteins is shown to be 2 mol of Zn2+/mol of protein hexamer. Consequently, we confirm the finding that off-axial coordination of Zn2+ via His-B10 and His-B5 residues is of minor importance for the SCN- -induced conformation change in solution [Renscheidt, H., Strassburger, W., Glatter, U., Wollmer, A., Dodson, G. G., & Mercola, D. A. (1984) Eur. J. Biochem. 142, 7-14]. Under T6 conditions, the kinetics of the reactions between insulin, proinsulin, and miniproinsulin and a variable excess of terpy are similar and biphasic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
R Palmieri  R W Lee  M F Dunn 《Biochemistry》1988,27(9):3387-3397
1H Fourier transform NMR investigations of metal ion binding to insulin in 2H2O were undertaken as a function of pH* to determine the effects of metal ion coordination to the Glu(B13) site on the assembly and structure of the insulin hexamer. The C-2 histidyl regions of the 1H NMR spectra of insulin species containing respectively one Ca2+ and two Zn2+/hexamer and three Cd2+/hexamer have been assigned. Both the Cd2+ derivative (In)6(Cd2+)2Cd2+, where two of the Cd2+ ions are coordinated to the His(B10) sites and the remaining Cd2+ ion is coordinated to the Glu(B13) site [Sudmeier, J.L., Bell, S.J., Storm, M. C., & Dunn, M.F. (1981) Science (Washington, D.C.) 212, 560], and the Zn2+-Ca2+ derivative (In)6-(Zn2+)2Ca2+, where the two Zn2+ ions are coordinated to the His(B10) sites and Ca2+ ion is coordinated to the Glu(B13) site, give spectra in which the C-2 proton resonances of His(B10) are shifted upfield relative to metal-free insulin. Spectra of insulin solutions (3-20 mg/mL) containing a ratio of In:Zn2+ = 6:2 in the pH* region from 8.6 to 10 were found to contain signals both from metal-free insulin species and from the 2Zn-insulin hexamer, (In)6(Zn2+)2. The addition of either Ca2+ (in the ratio In:Zn2+:Ca2+ = 6:2:1) or 40 mM NaSCN was found to provide sufficient additional thermodynamic drive to bring about the nearly complete assembly of insulin hexamers. Cd2+ in the ratio In:Cd2+ = 6:3 also drives hexamer assembly to completion. We postulate that the additional thermodynamic drive provide by Ca2+ and CD2+ is due to coordination of these metal ions to the Glu(B13) carboxylates of the hexamer. At high pH*, this coordination neutralizes the repulsive Coulombic interactions between the six Glu(B13) carboxylates and forms metal ion "cross-links" across the dimer-dimer interfaces. Comparison of the aromatic regions of the 1H NMR spectra for (In)6(Zn2+)2 with (In)6(Zn2+)2Ca2+, (In)6(Cd2+)2Cd2+, and (In)6(Cd2+)2Ca2+ indicates that binding of either Ca2+ or Cd2+ to the Glu(B13) site induces a conformation change that perturbs the environments of the side chains of several of the aromatic residues in the insulin structure. Since these residues lie on the monomer-monomer and dimer-dimer subunit interfaces, we conclude that the conformation change includes small changes in the subunit interfaces that alter the microenvironments of the aromatic rings.  相似文献   

3.
M C Storm  M F Dunn 《Biochemistry》1985,24(7):1749-1756
Substitution of Cd2+ for Zn2+ yields a hexameric insulin species containing 3 mol of metal ion per hexamer. The Cd2+ binding loci consist of the two His(B10) sites and a new site involving the Glu(B13) residues located at the center of the hexamer [Sudmeier, J. L., Bell, S. J., Storm, M. C., & Dunn, M. F. (1981) Science (Washington, D.C.) 212, 560-562]. Substitution of Co2+ or Co3+ for Zn2+ gives hexamers containing 2 mol of metal per hexamer. Insulin solutions to which both Cd2+ and Co2+ have been added in a ratio of 6:2:1 [In]:[Co2+]:[Cd2+] followed by oxidation to the exchange-inert Co3+ state yield stable hybrid species containing both Co3+ and Cd2+ with a composition of (In)6(Co3+)2Cd2+. The kinetics of the reaction of 2,2',2"-terpyridine (terpy) with the exchange-labile (In)6(Cd2+)2 and (In)6(Co2+)2 derivatives are biphasic and involve the rapid formation of an intermediate with coordination of one terpy molecule to each protein-bound metal ion; then, in a rate-limiting step the terpy-coordinated metal ion dissociates from the protein, and a second molecule of terpy binds to the metal ion to form a bis complex. Reaction of the exchange-inert Co3+ ions of (In)6(Co3+)2 with terpy is a slow apparent first-order process (t1/2 = 13.1 h). In contrast to the kinetic behavior of (In)6(Co2+)2 and (In)6(Cd2+)2, the Cd2+ ions bound to the hybrid (In)6(Co3+)2Cd2+ react quite slowly with terpy (t1/2 = 1 h at pH 8.0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
F D Coffman  M F Dunn 《Biochemistry》1988,27(16):6179-6187
An insulin hexamer containing one B10-bound Co(III) ion and one unoccupied B10 site has been synthesized. The properties of the monosubstituted hexamer show that occupancy of only one B10 site by Co3+ is sufficient to stabilize the hexameric form under the conditions of pH and concentration used in these studies. The experimentally determined, second-order rate constants for the binding of Zn2+ and Co2+ to the unoccupied B10 site are consistent with literature rate constants for the rate of association of these divalent metal ions with similar small molecule ligands. These findings indicate that the rate-limiting steps for Zn2+ and Co2+ binding involve the removal of the first aqua ligand. The rate constant for the binding of Cd2+ is significantly lower than the literature values for small molecule chelators, which suggests that some other protein-related process is rate-limiting for Cd2+ binding to the unoccupied, preformed B10 site. The kinetics of the assembly of insulin in the presence of limiting metal ion provides strong evidence indicating that the B13 site of the tetramer species can bind Zn2+, Cd2+, or Ca2+ prior to hexamer formation and that such binding assists hexamer formation. Both the tetramer and the hexamer B13 sites were found to exhibit similar affinities for Zn2+ and Cd2+ (Kd congruent to 9 microM), whereas the tetramer B13 sites bind Ca2+ much more weakly (Kd congruent to 1 mM for tetramer vs 83 microM for hexamer). The second-order rate constants estimated for the association of Zn2+ and Cd2+ to the tetrameric site indicate that the loss of the first inner-sphere aqua ligand is the rate-limiting step for binding.  相似文献   

5.
Sedimentation equilibrium experiments were conducted at pH 7.0 using solutions of bovine insulin containing 2 mol of zinc(II) ions per six base-mol of insulin. A detailed analysis of these results revealed the existence of a stable zinc-insulin hexamer together with linked polymerization reactions. Specifically these are a background polymerization of zinc-free insulin as previously described by Jeffrey et al. ((1976) Biochemistry 15, 4660--4665) and a slight tendency for the zinc-insulin hexamer to undergo indefinite self-association. Equilibrium constants governing these reactions are reported together with equations which permit calculation of the composition of the solution at any given total concentration. Comment is made on the possible biological significance of this linked polymerization pattern, and on the likely identity of the structure of the stable zinc-insulin hexamer with that previously reported from X-ray crystallographic studies.  相似文献   

6.
1H NMR and UV-visible electronic absorption studies have been performed to investigate the effects of anions and cyclic organic molecules on the interconversion of the T- and R-conformational states (Kaarsholm et al., 1989) of hexameric M (II)-substituted insulin in solution (M = Zn or Co.). Two ligand binding processes that stabilize the R-state conformation of the M(II)-substituted insulin hexamer [M(II)-R6] have been distinguished: (i) The binding of neutral organic molecules to the six, crystallographically identified, protein pockets in the Zn(II)-R6 insulin hexamer (Derewenda et al. 1989) generate homotropic site-site interactions that stabilize the R-state. Cyclohexanol, phenol, 4-nitrophenol, and 4-hydroxymethylbenzoate are shown to bind at these sites. (ii) The coordination of singly charged anions that are able to gain access to the two HisB10 coordinated metal ions of the M(II)-R6 hexamer stabilizes the R-state. Adducts of the M(II)-R6 hexamer are formed, thereby, in which the solvent-accessible fourth coordination position of the M(II) ion is replaced by a competing anion. Binding to these two classes of sites introduces strong heterotropic interactions that stabilize the R-state. UV-visible spectral data and apparent affinity constants for the adducts formed by the Co(II)-R6 hexamer with a wide range of anionic ligands are presented. The Co(II)-R6 adducts have a strong preference for the formation of pseudotetrahedral Co(II) centers. The HCO3- and pyridine-2-thiolate ions form Co(II)-R6 adducts that are proposed to possess pentacoordinate Co(II) geometries. The relevance of the Co(II)-R6 complexes to carbonic anhydrase catalysis and zinc enzyme model systems is discussed.  相似文献   

7.
The fluorescence of Eu(III) is used to study the nature of the Ca(II) binding sites in the central cavity of the two-zinc(II) insulin hexamer. The dependence of the Eu(III) fluorescence lifetime upon Eu(III) stoichiometry indicates that there are three identical Eu(III) binding sites present in the two-zinc(II) insulin hexamer in solution. Addition of excess Ca(II) causes a decrease in the Eu(III) fluorescence intensity, confirming that Ca(II) competes for the observed Eu(III) sites. The solvent dependence of the Eu(III) fluorescence lifetime (H2O vs. D2O) indicates that four OH groups are coordinated to each Eu(III) in the hexamer. Substitution of Co(II) for Zn(II) causes a decrease in the Eu(III) fluorescence lifetime. Calculations based on F?rster energy-transfer theory predict that the Co(II) [or Zn(II) in vivo] and Eu(III) [or Ca(II) in vivo] binding sites are separated by 9.6 +/- 0.5 A. Variation of the metal stoichiometries indicates that all three Eu(III) [or Ca(II) in vivo] sites are equidistant from the Zn(II) sites. We conclude that these sites are identical with the three central Zn(II) sites present in insulin hexamer crystals soaked in excess Zn(II) [Emdin, S. O., Dodson, G., Cutfield, J. M., & Cutfield, S. M. (1980) Diabetologia 19, 174-182] and suggest that these central sites are occupied by Ca(II) in vivo.  相似文献   

8.
9.
Metal ion binding to the insulin hexamer has been investigated by crystallographic analysis. Cadmium, lead, and metal-free hexamers have been refined to R values of 0.181, 0.172, and 0.172, against data of 1.9-, 2.5-, and 2.5-A resolution, respectively. These structures have been compared with each other and with the isomorphous two-zinc insulin. The structure of the metal-free hexamer shows that the His(B10) imidazole rings are arranged in a preformed site that binds a water molecule and is poised for Zn2+ coordination. The structure of the cadmium derivative shows that the binding of Cd2+ at the center of the hexamer is unusual. There are three symmetry-related sites located within 2.7 A of each other, and this position is evidently one-third occupied. It is also shown that the coordinating B13 glutamate side chains of this derivative have two partially occupied conformations. One of these conformations is two-thirds occupied and is very similar to that seen in two-zinc insulin. The other, one-third-occupied conformation, is seen to coordinate the one-third-occupied metal ion. The binding of Ca2+ to insulin is assumed to be essentially identical with that of Cd2+. Thus, we conclude that the Ca2+ binding site in the insulin hexamer is unlike that of any other known calcium binding protein. The crystal structures reported herein explain how binding of metal ions stabilizes the insulin hexamer. The role of metal ions in hexamer assembly and dissociation is discussed.  相似文献   

10.
Increasing interest is focused on the role of zinc in biological systems. A rapidly growing family of DNA-binding proteins contains "zinc-fingers", where zinc is bound to cysteine or histidine residues. On the other hand zinc is able to displace calcium from its binding sites and in this way it may modify calcium-mediated cellular processes. In the present report dissociation rates of Zn2(+)- and Ca2(+)-complexes with 5-F-BAPTA, a widely used NMR-active calcium indicator, have been measured by two-dimensional 19F NMR exchange spectroscopic methods. The results show that the lifetime of the Zn2(+)-complex is more than five times longer than that of the Ca2(+)-complex. The longer lifetime, when combined with a higher thermodynamical stability of the Zn2+-complex, may explain why, in some cellular processes, Zn2+ can compete with Ca2+ in spite of a presumably high [Ca2+]/[Zn2+] free ion concentration ratio.  相似文献   

11.
Cupric insulin was modified by the addition of cross-linking disulphide bridges between hexamers. The electron paramagnetic resonance (EPR) spectrum of this freeze-dried material was compared with that of freeze-dried unmodified cupric insulin containing various amounts of copper and added water. The modified insulin was found to have cupric ion sites magnetically very similar to that of native insulin containing two cupric ions per hexamer. Native hexamer produced in the presence of 2 Cu(II) ions per hexamer gave, after freeze-drying, an EPR spectrum with ACu=16.5 mT, g=2.285 and g=2.059 (site 1). The use of 4 or 6 Cu(II) ions per hexamer resulted in spectra with two components-a major component with the same ACu and g values as the sample containing 2 Cu(II) ions (site 1) and an additional minor component (site 2). These sites have been identified with the analogous zinc binding site within the hexamer formed by three B-10 histidine residues (site 1) [1, 2] and the site formed by the B-1 α-amino and A-17 glutamyl-γ-barboxylic acid functions where excess zinc is bound (site 2) [3, 4]. The addition of water to native hexamer containing 2, 4, or 6 Cu(II) ions resulted in the appearance of three distinct EPR absorptions, one of which had the same parameters as the freeze-dried native insulin containing 2 Cu(II) ions per hexamer (site 1). Two further sites appeared (3 and 4) with the following parameters: ACu=15.0 mT, g=2.353, and g=2.07; ACu=16.5 mT, g=2.315, and g=2.07, respectively.  相似文献   

12.
Chen F  Liu G  Xu Z  Zeng Z 《BMB reports》2008,41(4):305-309
Cobalt is an essential microelements in many biological processes involving enzymatic activity. We found that Zn2+ and Mg2+, which are in the active site of native calf intestine alkaline phosphatase (CIP), can be replaced by Co2+ directly in solution. The effect of Co2+ concentration on the substitution reaction was examined at ratios of [Co2+]/[CIP] from 0:1 to 8:1. The quantity of Zn2+ in CIP decreased progressively as the ratio was increased, but the amount of Mg2+ changed in irrregular fashion. A series of active site models of the reaction mechanism of CIP are proposed. Low pH was found to promote the replacement of Mg2+ by Co2+. To understand how the substitution affects the enzyme, we also solved the secondary structure of CIP after reaction with Co2+ in different conditions.  相似文献   

13.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

14.
1H n.m.r. studies at 270 MHz were made of the transformation of 2 Zn insulin hexamer to 4 Zn hexamer produced by the addition of anions (thiocyanate ion). Four separate H2 histidine resonances were observed for the B5 and B10 histidines in 2 Zn hexamer at pH 7 and 9 and four separate resonances also occurred in the 4 Zn hexamer. The observation of these resonances and others from phenylalanine, tyrosine and leucine residues showed that the 2 Zn to 4 Zn transformation probably occurred in solution in a similar manner to that observed in the crystal. Furthermore as occurred in the crystal, it was found that in solution the transformation was reversible (on removal of thiocyanate) and that 2 Cd insulin was unable to undergo the transformation. Des-Phe-Bl-insulin did not undergo the transformation. Addition of SCN- to Zn-free insulin (mainly dimer) produced only a small transformation, consistent with the idea that Zn2+ promotes formation of hexamer from dimer but probably does not otherwise affect the transformation.  相似文献   

15.
Destripeptide (B28-B30) insulin (DTRI) is an insulin analogue that has much weaker association ability than native insulin but keeps most of its biological activity. It can be crystallized from a solution containing zinc ions at near-neutral pH. Its crystal structure has been determined by molecular replacement and refined at 1.9 A resolution. DTRI in the crystal exists as a loose hexamer compared with 2Zn insulin. The hexamer only contains one zinc ion that coordinates to the B10 His residues of three monomers. Although residues B28-B30 are located in the monomer-monomer interface within a dimer, the removal of them can simultaneously weaken both the interactions between monomers within the dimer and the interactions between dimers. Because the B-chain C-terminus of insulin is very flexible, we take the DTRI hexamer as a transition state in the native insulin dissociation process and suggest a possible dissociation process of the insulin hexamer based on the DTRI structure.  相似文献   

16.
Although much is known about the effects of Na+, K+, and Cl- on the functional activity of the neuronal dopamine transporter, little information is available on their role in the initial event in dopamine uptake, i.e., the recognition step. This was addressed here by studying the inhibition by dopamine of the binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a phenyltropane analogue of cocaine, to the cloned human dopamine transporter expressed in HEK-293 cells. The decrease in the affinity of dopamine (or WIN 35,428) binding affinity with increasing [K+] could be fitted to a competitive model involving an inhibitory cation site (1) overlapping with the dopamine (or WIN 35,428) domain. The K+ IC50 for inhibiting dopamine or WIN 35,428 binding increased linearly with [Na+], indicating a K(D,Na+) of 30-44 mM and a K(D,K+) of 13-16 mM for this cation site. A second Na+ site (2), distal from the WIN 35,428 domain but linked by positive allosterism, was indicated by model fitting of the WIN 35,428 binding affinities as a function of [Na+]. No strong evidence for this second site was obtained for dopamine binding in the absence or presence of low (20 mM) Cl- and could not be acquired for high [Cl-] because of the lack of a suitable substitute ion for Na+. The K(D) but not Bmax of [3H]WIN 35,428 binding increased as a function of the [K+]/[Na+] ratio regardless of total [Cl-] or ion tonicity. A similar plot was obtained for the Ki of dopamine binding, with Cl- at > or = 140 mM decreasing the Ki. At 290 mM Cl- and 300 mM Na+ the potency of K+ in inhibiting dopamine binding was enhanced as compared with the absence of Cl- in contrast to the lack of effect of Cl- up to 140 mM (Na up to 150 mM). The results indicate that Cl- at its extracellular level enhances dopamine binding through a mechanism not involving site 1. The observed correspondence between the WIN 35,428 and dopamine domains in their inclusion of the inhibitory cation site explains why many of the previously reported interrelated effects of Na+ and K+ on the binding site of radiolabeled blockers to the dopamine transporter are applicable to dopamine uptake in which dopamine recognition is the first step.  相似文献   

17.
Circular dichroic spectroscopy clearly reveals a solvent-induced conformational change of insulin in the presence of zinc ions. The spectral change corresponds to an increase in helix content. The transition observed in solution is an equivalent of the 2Zn----4Zn insulin transformation in the crystal. This is inferred from a series of observations. (1) The spectral effects are compatible with the refolding of the B-chain N-terminus into a helix known from crystal studies. (2) The spectral effects are induced by the very same conditions which are known to induce the 2Zn----4Zn insulin transformation in the crystal (i.e. threshold concentrations of NaCl, KSCN, NaI, for example). (3) They fail to be induced by the same conditions that fail to induce the crystal transformation (e.g. Ni2+ instead of Zn2+). It is concluded that the potential to undergo the transition resides in the hexamer since neither insulin dimers nor monomeric des-pentapeptideB26-30-insulin respond detectably to high halide concentration. Secondly the ability of zinc ions to accommodate tetrahedral coordination allows the transition which is not permitted by other divalent metal ions. Thirdly the transition is independent of the off-axial tetrahedral zinc coordination sites since it occurs in [AlaB5]insulin which lacks the B5 histidine necessary for their formation. A symmetrically rearranged hexamer thus appears possible with two tetrahedrally coordinated zinc ions on the threefold axis; this is consistent with the observation that in native insulin two zinc ions per hexamer are sufficient to produce the full spectral effect. The amount of additional helix derived from the circular dichroic spectral change, however, cannot settle whether the transition comprises only three or all six of the subunits to yield a symmetrical hexamer. Finally the transformation in solution evidently still occurs in an intramolecularly A1-B29-cross-linked insulin in spite of the partially reduced flexibility.  相似文献   

18.
Changes in several parameters involved in the control of metabolism were correlated with changes in glucose utilization in rat brain slices incubated under conditions which reduced glucose oxidation by 40 to 70%. The parameters included: the concentrations of ATP, ADP, AMP, and the adenylate energy charge; the cytoplasmic oxidation-reduction state ([NAD+]/[NADH]), determined from the [pyruvate]/[lactate] equilibrium; the mitochondrial oxidation-reduction state, determined from the [NH4+] ]2-oxoglutarate]/[glutamate] Equilibrium; the cytoplasmic and mitochondrial oxidation-reduction potentials (in volts), calculated from the respective [NAD+]/ [NADH] ratios using the Nernst equation; and the difference between the cytoplasmic and mitochondrial [NAD+]/[NADH] potentials. The conversion of [3, 4-14C] glucose to 14CO2 and of [U-14C] glucose to acetylcholine and to lipids, proteins, and nucleic acids by the brain slices were also determined. The values obtained by subtracting the mitochondrial from the cytoplasmic [NAD+1/[NADH] potentials correlated more closely with glucose utilization than did other parameters, under the conditions studied. For the synthesis of acetylcholine, the correlation coefficient was 0.96, and for the production of 14CO2 from [3, 4-14C] glucose it was 0.82.  相似文献   

19.
Experiments on poly(U)-dependent binding of Phe-tRNAPhe to 30S subunits revealed the existence of a critical [Mg2+]/[NH4+] ratio in a medium (approximately 0.05-0.1) with respect to the binding capacity of subunits. If the ratio is greater than the critical one, 30S subunits undergo reversible inactivation even at the highest Mg2+ concentrations (up to 20 mM). The stronger is the deviation from the [Mg2+]/[NH4+] value = 0.05-0.1, the greater are both the rate and extent of such an inactivation. Two sites for tRNA in initially active 30S subunits have been shown to be inactivated in an interdependent way. On the other hand, a progressive decrease of [Mg2+]/[NH4+] ratio in a medium (from the value of 0.05 and lower) does not produce inactivation, but rather results in reduced affinity constants of Phe-tRNAPhe for active sites of 30S subunits.  相似文献   

20.
K L Ngai  L N Ornston  R G Kallen 《Biochemistry》1983,22(22):5223-5230
Steady-state kinetic analysis of the divalent metal ion requiring cis,cis-muconate cycloisomerase catalyzed interconversion of cis,cis-muconate and (+)-muconolactone obeys Michaelis-Menten kinetics and the Haldane relationship from pH 6.2 to 8.3. The pH vs. kcat/Km profiles suggest free-enzyme apparent pKa values of 6.2 and 7.4: the reciprocal behavior of the data with respect to the latter pKa value is consistent with base-acid catalysis by the enzyme involving proton removal from the lactone and protonation of cis,cis-muconate, respectively. This catalysis by the enzyme of proton transfer is consistent with the stereospecific incorporation of solvent deuterium into the pro-5R position of (+)-muconolactone in the enzyme-catalyzed reaction: in reverse, the departure of the carboxylic oxygen atom and proton from the C(4) and C(5) carbon atoms follows a syn (cis) route [Avigad, G., & Englard, S. (1969) Fed. Proc., Fed. Am. Soc. Exp. Biol. 28, 345, Abstr. 486]. The titration of enzyme freed of divalent metal ion with manganous ion, monitored by electron paramagnetic resonance spectroscopy and steady-state kinetic measurements, indicates a single binding site per subunit characterized by KdissE X Mn = [E] [Mn2+]/[E X Mn2+] = 4.5 and 3.0 microM, respectively, the latter value analyzed via a rapid equilibrium mechanism. The paramagnetic effects of Mn2+ on the 1/T1 and 1/T2 values for the H-5S proton of (+)-muconolactone in the E X ML X Mn ternary complex provide an estimate of the correlation time, tau c, at 5 X 10(-9) s from the T1/T2 ratio, indicating that the condition of rapid exchange of (+)-muconolactone in solution with the ternary complex obtains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号