首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthrax lethal toxin consists of two separate proteins, protective antigen and lethal factor (LF). Certain macrophages and a mouse macrophage-like cell line, J774A.1, are lysed by low concentrations of lethal toxin. In contrast, another macrophage cell line, IC-21, and all other cell types tested were resistant to this toxin. To discover the basis for this difference, each step in the intoxication process was examined. No differences between sensitive and resistant cells were found in receptor binding or proteolytic activation of protective antigen, steps that are required prior to LF binding. To determine whether resistance results from a defect in translocation to the cytosol, we introduced LF into J774A.1 and IC-21 cells and a nonmacrophage cell line (L6 myoblast) by osmotic lysis of pinocytic vesicles. Only J774A.1 cells were lysed; no effect was observed in IC-21 and L6 cells. These results suggest that resistant cells either lack the intracellular target of LF or fail to process LF to an active form. The relatively low potency of LF introduced into J774A.1 cells by osmotic lysis suggests that protective antigen may also be required at a stage subsequent to endocytosis.  相似文献   

2.
To determine whether rabies viruses replicate in macrophage or macrophage-like cells, several human and murine macrophage-like cell lines, as well as primary cultures of murine bone marrow macrophages, were incubated with the Evelyn-Rokitnicki-Abelseth (ERA) virus and several different street rabies viruses (SRV). ERA rabies virus replicated well in human monocytic U937 and THP-1 cells and murine macrophage IC-21 cells, as well as primary cultures of murine macrophages. Minimal replication was detected in murine monocytic WEHI-3BD- and PU5-1R cells, and ERA virus did not replicate in murine monocytic P388D1 or J774A.1 cells. A tissue culture-adapted SRV of bat origin also replicated in IC-21 and U937 cells. Non-tissue culture-adapted SRV isolated from different animal species, particularly bats, replicated minimally in U937, THP-1, IC-21 cells and primary murine bone marrow macrophages. To determine whether rabies virus replication is dependent upon the state of differentiation of the macrophage-like cell, human promyelocytic HL-60 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA). ERA rabies virus replicated in the differentiated HL-60 cells but not in undifferentiated HL-60 cells. Persistent infections were established in macrophage-like U937 cells with ERA rabies virus and SRV, and infectious SRV was isolated from adherent bone marrow cells of mice that had been infected 96 days previously. Virus harvested from persistently infected U937 cells and the adherent bone marrow cells had specifically adapted to each cell. This specificity was shown by the inability of the viruses to infect macrophages other than U937 cells and primary bone marrow macrophages, respectively. Virus titers of the persistently infected U937 cells fluctuated with extended cell passage. After 30 passages, virus released from the cells had lost virulence as shown by its inability to kill intracranially inoculated mice. However, the avirulent virus released from the persistently infected cells was more efficient in infecting and replicating in naive U937 cells than the virus which was used to establish the persistent infection. These results suggest that macrophages may serve as reservoirs of infection in vivo, sequestering virus which may subsequently be activated from its persistent state, resulting in clinical infection and death.  相似文献   

3.
The prevalence of infections with enterococci is increasing worldwide. However, little is known about the mechanisms which enable these opportunistic pathogens to cause infections of their host. Here we demonstrate that Enterococcus faecium in the presence of lysozyme induces necrosis in human and mouse cells after 4 h indicated by disrupted cellular membranes of epithelial (HeLa), myeloid (U937, J774A.1) and lymphoid (Jurkat J16, thymocytes), but not intestinal epithelial cells (CaCo-2, CMT-93). Using an appropriate mutant strain it was shown that the enterococcal surface-protein SgrA is involved in cell death induction in mouse cells (J774A.1, thymocytes). Microscopic analyses of epithelial cells 30 min post infection revealed that lysozyme increases adhesion of E. faecium to HeLa, but not CaCo-2 cells. At that time the phalloidin-FITC-stained cytoskeleton of infected cells was still intact, whereas 2 h post infection the F-actin network of HeLa, but not CaCo-2 cells was disrupted. Hence, the early, lysozyme-mediated increase of bacterial adherence plays an important role for cell death induction by E. faecium in HeLa cells. Moreover, bacterial extracellular hydrogen peroxide might contribute to necrosis induction, since the rate of propidium iodide-positive HeLa and J774A.1 cells was lowered after infection with a ROS-deficient E. faecium mutant.  相似文献   

4.
We compared infection of a murine macrophage-like cell line, J774-1, with two Theiler's murine encephalomyelitis virus subgroup strains. The GDVII strain, which is highly virulent and produces acute polioencephalomyelitis in mice, did not actively replicate in J774-1 cells, although there was a significant inhibition in cellular protein synthesis. In contrast, the DA strain, which is less virulent and causes demyelination with a persistent virus infection, productively infected J774-1 cells; however, there was less virus produced than in BHK-21 cells, and there was little if any cellular protein shutoff. These in vitro data may provide some explanation for the biological activities that are observed between both subgroup strains.  相似文献   

5.
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination.  相似文献   

6.
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.  相似文献   

7.
Production of prostaglandin D2 by murine macrophage cell lines   总被引:2,自引:0,他引:2  
Several tumor-derived murine macrophage cell lines were evaluated in vitro as cloned prototypes of tissue macrophages for their ability to metabolize arachidonic acid. Unexpectedly, two cell lines, J774A.1 and WR19M.1, rapidly converted exogenous 14C-arachidonic acid (AA) to a single major prostaglandin metabolite. The compound, PGD2, was positively identified by TLC, HPLC, and GC-MS. The enzymatic formation of the PGD2 was shown by inhibition of its formation by indomethacin and reduced formation of 14C-PGD2 from 14C-PGH2 in boiled cells. When J774A.1 cells were prelabeled with 3H-AA, cultured for 24 hours, and stimulated with lipopolysaccharide (LPS), PGD2 was again the predominant product. No other tumor derived cell lines, including several other murine macrophage lines, produced significant amounts of PGD2. Elicited and activated murine peritoneal macrophages produced only small amounts of PGD2, but resident peritoneal macrophages produced modest amounts of PGD2. Exaggerated formation of PGD2 by J774A.1 and WR19M.1 cells may be a consequence of neoplastic transformation or the clonal expansion of a minor subpopulation of normal tissue macrophages.  相似文献   

8.
To investigate the mechanisms involved in Helicobacter pylori-mediated inducible nitric oxide synthase (iNOS) upregulation in mononuclear cells we cocultivated human THP-1 acute monocytic leukemia cells and murine J774A.1 professional macrophages with different H. pylori wild-type strains and mutants. We have shown that H. pylori-mediated iNOS induction in J774A.1 is independent of established virulence factors but dependent on direct interaction between bacteria and cells. In J774A.1, iNOS was equally upregulated by the wild-type strains J99, 26695, P12, and P1 as well as by mutants lacking the cag pathogenicity island, vacA, katA, alpAB genes and the hp0043 gene taking part in lipopolysaccharide biosynthesis when direct cell contact was allowed but not when bacteria and cells were separated by protein-permeable filter membranes. In contrast, iNOS was not induced in THP-1. This indicates that H. pylori-mediated iNOS induction in J774A.1 is independent of important virulence factors whereas cell contact is crucial which suggests a role of adhesion or phagocytosis.  相似文献   

9.
Several tumor-derived murine macrophage cell lines were evaluated as cloned prototypes of tissue macrophages for their ability to metabolize arachidonic acid. Unexpectedly, two cell lines, J774A.1 and WR19M.1, rapidly converted exogenous 14C-arachidonic acid (AA) to a single major prostaglandin metabolite. The compound, PGD2, was positively identified by TLC, HPLC, and GC-MS. The enzymatic formation of the PGD2 was shown by inhibition of its formation by indomethacin and reduced formation of 14C-PGD2 and 14C-PGD2 in boiled cells. When J774A.1 cells were prelabeled with 3H-AA, cultured for 24 hours, and stimulated with lipopolysaccharide (LPS), PGD2 was again the predominant product. No other tumor derived cell lines, including several other murine macrophage lines, produced significant amounts of PGD2. Elicited and activated murine peritoneal macrophages produced only small amounts of PGD2, but resident peritoneal macrophages produced modest amounts of PGD2. Exaggerated formation of PGD2 by J774A.1 and WR19M.1 cells may be a consequence of neoplastic transformation or the clonal expansion of a minor subpopulation of normal tissue macrophages.  相似文献   

10.
The incorporation of radioactive selenium into cellular proteins and the effect of selenite on proliferation were examined in human (HeLa, HT-29, and IMR-90) and mouse (3T3 and CMT-93) cell lines. Proteins incorporating selenium were detected by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major polypeptide subunits at 60, 23, 21, 19, and 16 kD were detected in the two tumorigenic and one normal human cell lines. The 23 kD polypeptide migrated to the same position on the gel as the major subunit of human erythrocyte glutathione peroxidase. In the mouse cells, the 60 kD polypeptide was almost entirely absent; four other major selenoproteins were detected, with molecular weights similar to those in the human cells. In both mouse and human cells, the same pattern of selenoproteins was observed irrespective of whether the cells were grown in medium containing 10% fetal bovine serum or in defined medium supplemented with 0.1 or 1 microM selenite, or with 1% serum. The effect of selenite on proliferation of HeLa, HT-29, and CMT-93 cells in medium supplemented with 10% fetal bovine serum and in serum-free medium was examined. At concentrations up to about 1 microM, selenite stimulated proliferation of the human cells slightly in serum-free medium but not in serum-supplemented medium. At concentrations of about 5 microM and higher selenite significantly inhibited proliferation of all cells in both types of media. In CMT-93 cells, this inhibition was greater in serum-free medium, but there were no significant differences in this regard in the human cells. These results demonstrate that selenium is stably incorporated into several polypeptides in human and mouse cells, that there are no significant differences in this regard among several cell lines, and slight differences between human and mouse cells. They further confirm that selenium can have a slight stimulatory effect on cell growth, and a much larger inhibitory effect, depending on its concentration.  相似文献   

11.
Although murine coronaviruses naturally infect only mice, several virus variants derived from persistently infected murine cell cultures have an extended host range. The mouse hepatitis virus (MHV) variant MHV/BHK can infect hamster, rat, cat, dog, monkey, and human cell lines but not the swine testis (ST) porcine cell line (J. H. Schickli, B. D. Zelus, D. E. Wentworth, S. G. Sawicki, and K. V. Holmes, J. Virol. 71:9499-9507, 1997). The spike (S) gene of MHV/BHK had 63 point mutations and a 21-bp insert that encoded 56 amino acid substitutions and a 7-amino-acid insert compared to the parental MHV strain A59. Recombinant viruses between MHV-A59 and MHV/BHK were selected in hamster cells. All of the recombinants retained 21 amino acid substitutions and a 7-amino-acid insert found in the N-terminal region of S of MHV/BHK, suggesting that these residues were responsible for the extended host range of MHV/BHK. Flow cytometry showed that MHV-A59 bound only to cells that expressed the murine glycoprotein receptor CEACAM1a. In contrast, MHV/BHK and a recombinant virus, k6c, with the 21 amino acid substitutions and 7-amino-acid insert in S bound to hamster (BHK) and ST cells as well as murine cells. Thus, 21 amino acid substitutions and a 7-amino-acid insert in the N-terminal region of the S glycoprotein of MHV/BHK confer the ability to bind and in some cases infect cells of nonmurine species.  相似文献   

12.
A murine macrophage-like cell line,J774,acquried,in response to LPS,an ability to kill tumor necrosisfactor(TNF)-insensitive target P815 mastocytoma cells,whereas another cell line,P388D1,did not.LPS-triggered signaling mechanisms between the two celllines were compared with an aim to inquire about thepossible nature of the above-mentioned difference.Theresults showed that two cell lines respond to LPS-treatment by parallel activation of both phospholipasesC and A_2(PLC and PLA_2)to approximately the sameextent.The maximum response of both enzymes of J774cells was noted within 10 min of the treatment,whereas that of P388D1 cells required more than 20min.The other properties of LPS-responsive enzymesstudied were similar between two cell lines,ineludingActivation of PLC and PLA_2 and PKC in macrophages by LPSCa~(2 )augmentation of enzyme activation,participationof guanine nucleotide binding (G) proteins in theinitial activation processes,and inhibition of enzymeactivation by the prior treatment of cells with choleraorpartussis toxins etc.Moreover,LPS-triggered activationof PLC and PLA2 was found to be followed by theincrease of PKC activities in both cell lines.In spite ofthese similarities,J774 cells possessed both basic andacidic forms of PKC activities,while P 388D1 cells ownedonly PKC of basic form.Nevertheless,the question whyJ774 cells,but not P388D1 cells,can acquire thetumoricidal actiyity,aganist P815 cells following LPS-treatment remains to be answered.  相似文献   

13.
We have previously shown that non-pathogenic Gram-negative Bacteroides vulgatus induces transient RelA phosphorylation (Ser-536), NF-kappaB activity, and pro-inflammatory gene expression in native and intestinal epithelial cell (IEC) lines. We now demonstrate that 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) but not prostaglandin E(2) inhibits lipopolysaccharide (LPS) (B. vulgatus)/LPS (Escherichia coli)-induced RelA phosphorylation and interleukin-6 gene expression in the colonic epithelial cell line CMT-93. This inhibitory effect of 15d-PGJ(2) was mediated independently of LPS-induced IkappaBalpha phosphorylation/degradation and RelA nuclear translocation as well as RelA DNA binding activity. Interestingly, although B. vulgatus induced nuclear expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in native epithelium of monoassociated Fisher rats, PPARgamma-specific knock-down in CMT-93 cells using small interference RNA failed to reverse the inhibitory effects of PPARgamma agonist 15d-PGJ(2), suggesting PPARgamma-independent mechanisms. In addition, 15d-PGJ(2) but not the synthetic high affinity PPARgamma ligand rosiglitazone triggered ERK1/2 phosphorylation in IEC, and most importantly, MEK1 inhibitor PD98059 reversed the inhibitory effect of 15dPGJ(2) on LPS-induced RelA phosphorylation and interleukin-6 gene expression. Calyculin A, a specific phosphoserine/phospho-threonine phosphatase inhibitor increased the basal phosphorylation of RelA and reversed the inhibitory effect of 15d-PGJ(2) on LPS-induced RelA phosphorylation. We further demonstrated in co-immunoprecipitation experiments that 15d-PGJ(2) triggered protein phosphatase 2A activity, which directly dephosphorylated RelA in LPS-stimulated CMT-93 cells. We concluded that 15d-PGJ(2) may help to control NF-kappaB signaling and normal intestinal homeostasis to the enteric microflora by modulating RelA phosphorylation in IEC through altered protein phosphatase 2A activity.  相似文献   

14.
Streptococcus iniae has become one of the most serious aquatic pathogens in the last decade, causing large losses in wild and farmed fish worldwide. There is clear evidence that this pathogen is capable not only of causing serious disease in fish but also of being transferred to and infecting humans. In this study, we investigate the interaction of S. iniae with two murine macrophage cell lines, J774-A1 and RAW 264.7. Cytotoxicity assay demonstrated significant differences between live and UV-light killed IUSA-1 strains. The burst respiratory activity decreased to baseline after 1 and 4 h of exposure for J774-A1 and RAW 264.7, respectively. Immunofluorescent and ultrastructural study of infected cells confirmed the intracellular localization of bacteria at 1 h and 24 h post-infection. Using qRT-PCR arrays, we investigated the changes in the gene expression of immune relevant genes associated with macrophage activation. In this screening, we identified 11 of 84 genes up-regulated, we observed over-expression of pro-inflammatory response as IL-1α, IL-1β, and TNF-α, without a good anti-inflammatory response. Present findings suggest a capacity of S. iniae to modulate a mammalian macrophages cell lines to their survival and replication intracellular, which makes this cell type as a reservoir for continued infection.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.  相似文献   

16.
Persistent infection with mouse hepatitis virus (MHV) strain A59 in murine DBT (delayed brain tumor) cells resulted in the emergence of host range variants, designated V51A and V51B, at 210 days postinfection. These host range mutants replicated efficiently in normally nonpermissive Chinese hamster ovary (CHO), in human hepatocarcinoma (HepG2), and to a lesser extent in human breast carcinoma (MCF7) cell lines. Little if any replication was noted in baby hamster kidney (BHK), green African monkey kidney (COS-7), feline kidney (CRFK), and swine testicular (ST) cell lines. By fluorescent antibody (FA) staining, persistent viruses V10B and V30B, isolated at days 38 and 119 days postinfection, also demonstrated very low levels of replication in human HepG2 cells. These data suggest that persistence may rapidly select for host range expansion of animal viruses. Pretreatment of HepG2 cells with a polyclonal antibody directed against human carcinoembryonic antigens (CEA) or with some monoclonal antibodies (Col-1, Col-4, Col-12, and Col-14) that bind human CEA significantly inhibited V51B infection. Under identical conditions, little or no blockade was evident with other monoclonal antibodies (kat4c or Col-6) which also bind the human CEA glycoproteins. In addition, an antibody (EDDA) directed against irrelevant antigens did not block V51B replication. Pretreatment with the Col-4 and Col-14 antibodies did not block Sindbis virus replication in HepG2 cells or MHV infection in DBT cells, suggesting that one or more CEA glycoproteins likely functioned as receptors for V51B entry into human cell lines. To test this hypothesis, the human biliary glycoprotein (Bgp) and CEA genes were cloned and expressed in normally nonpermissive BHK cell lines by using noncytopathic Sindbis virus replicons (pSinRep19). By growth curves and FA staining, human CEA and to a much lesser extent human Bgp functioned as receptors for V51B entry. Furthermore, V51B replication was blocked with polyclonal antiserum directed against human CEA and Bgp. Under identical conditions, the parental MHV strain A59 failed to replicate in BHK cells expressing human Bgp or CEA. These data suggest that MHV persistence may promote virus cross-species transmissibility by selecting for virus variants that recognize phylogenetic homologues of the normal receptor.  相似文献   

17.
We have previously reported that IL-10 inhibits proliferation of normal bone marrow-derived macrophages and of the monocyte/macrophage cell line J774. Activation of Stat3 was shown to be necessary and sufficient to mediate inhibition of proliferation. To investigate further the mechanism of growth arrest, we examined the effect of IL-10 on expression of cell cycle inhibitors. We found that IL-10 treatment increases expression of the cyclin-dependent kinase inhibitors p19INK4D and p21CIP1 in macrophages. IL-10 cannot induce p19INK4D expression or block proliferation when Stat3 signaling is blocked by a dominant negative Stat3 or a mutant IL-10Ralpha which does not recruit Stat3 in J774 cells, whereas p21CIP1 induction is not affected. An inducibly active Stat3 (coumermycin-dimerizable Stat3-Gyrase B), which suppresses J774 cell proliferation, also induced p19INK4D expression. Sequencing of the murine p19INK4D promoter revealed two candidate Stat3 binding sites, and IL-10 treatment activated a reporter gene controlled by this promoter. These data suggest that Stat3-dependent induction of p19INK4D mediates inhibition of proliferation. Enforced expression of murine p19INK4D cDNA J774 cells significantly reduced their proliferation. Use of antisense p19INK4D and analysis of p19INK4D-deficient macrophages confirmed that p19INK4D is required for optimal inhibition of proliferation by IL-10, and indicated that additional IL-10 signaling events contribute to this response. These data indicate that Stat3-dependent induction of p19INK4D and Stat3-independent induction of p21CIP1 are important components of the mechanism by which IL-10 blocks proliferation in macrophages.  相似文献   

18.
Abstract

Liposomes in the 200 nm size range were prepared from the ether lipids extracted from various Archaeobacteria (coined archaeosomes), and from conventional lipids. The entrapment of peroxidase or carboxyfluorescein was used to compare the in vitro uptake of various liposomes by murine peritoneal macrophages, J774A.1 macrophages and several non phagocytic cell lines. While liposomes composed of ester lipids dipalmitoylphosphatidylcholine, or dimyristoylphosphatidylcholine: dimyristoylphosphatidylglycerol: cholesterol (1.8:0.2:1.5, molar ratio) were taken up by macrophage species, the uptake of archaeosomes was 3 to 53 times greater. Uptake by non phagocytic HEp-2, HeLa, and EJ/28 cells was considerably less. Evidence from time-course studies using cytochalasins B+D, sub-optimal temperature or formaldehyde treatments of macrophages, indicated that the archaeosomes lost structural integrity following internalization within the J774A. 1 phagocytic cells. No cytotoxicity was observed in viability or growth assays with J774A. 1 cells, using high doses of three representative types of archaeosomes and one type of conventional-liposome. Therefore, archaeosomes may be well suited to applications where phagocytic cells are a target site.  相似文献   

19.
Early molecular responses to Influenza A (FLUA) virus strain A/X-31 H3N2 in macrophages were explored using J774.A1 and RAW 264.7 murine cell lines. NF-kappa B (NFκB) was reported to be central to FLUA host-response in other cell types. Our data showed that FLUA activation of the classical NFκB dependent pathway in these macrophages was minimal. Regulator proteins, IkappaB-alpha and –beta (IκBα, IκBβ), showed limited degradation peaking at 2 h post FLUA exposure and p65 was not observed to translocate from the cytoplasm to the nucleus. Additionally, the non-canonical NFκB pathway was not activated in response to FLUA. The cells did display early increases in TNFα and other inflammatory cytokine and chemokine production. Mitogen activated phosphokinase (MAPK) signaling pathways are also reported to control production of inflammatory cytokines in response to FLUA. The activation of the MAPKs, cJun kinases 1 and 2 (JNK 1/2), extracellular regulated kinases 1 and 2 (ERK 1/2), and p38 were investigated in both cell lines between 0.25 and 3 h post-infection. Each of these kinases showed increased phosphorylation post FLUA exposure. JNK phosphorylation occurred early while p38 phosphorylation appeared later. Phosphorylation of ERK 1/2 occurred earlier in J774.A1 cells compared to RAW 264.7 cells. Inhibition of MAPK activation resulted in decreased production of most FLUA responsive cytokines and chemokines in these cells. The results suggest that in these monocytic cells the MAPK pathways are important in the early response to FLUA.  相似文献   

20.
Extracts or supernatants from cultures of Lactobacilli are used for their medicinal effects, including wound healing and immune system stimulating activity. We have studied the in vivo and in vitro effects of supernatants from bacterial cultures of two strains of Lactobacillus (LS) on tissue repair and angiogenesis. Subcutaneous injection of LS into rodent ears led to proliferation of blood vessels that also exhibited strong immunostaining for Flk-1 receptor. Some inflammatory cells were scattered among the blood vessels. The continuous influx of polymorphonuclear leukocytes (PMNs) and macrophages into transcutaneous wounds in mice treated with LS resulted in prolonged inflammatory phase of wound healing and delayed wound closure, including reepithelialization. Subcutaneous injection of Matrigel impregnated with LS into the abdominal wall led to rapid and transient influx of PMNs in the vicinity of the gel. LS stimulated the proliferation of murine macrophage J774.A1 cell line and porcine lymphocytes but not that of murine fibroblast AKR-2B cells. LS also induced production of TNF-alpha by J774.A1 cells and by porcine kidney epithelial LLC-PK1 cells. LS did not appear to have an effect on collagen production. In conclusion, our study demonstrates the potential of LS to function as a stimulator of the inflammatory stage of tissue repair, TNF-alpha production, and of angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号