首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR.  相似文献   

7.
Ig class switch recombination (CSR) occurs by an intrachromosomal deletional process between switch (S) regions in B cells. To facilitate the study of CSR, we derived a new B cell line, 1.B4.B6, which is uniquely capable of mu --> gamma3, mu --> epsilon, and mu --> alpha, but not mu --> gamma1 CSR at its endogenous loci. The 1.B4.B6 cell line was used in combination with plasmid-based isotype-specific S substrates in transient transfection assays to test for the presence of trans-acting switching activities. The 1.B4.B6 cell line supports mu --> gamma3, but not mu --> gamma1 recombination, on S substrates. In contrast, normal splenic B cells activated with LPS and IL-4 are capable of plasmid-based mu --> gamma1 CSR and demonstrate that this S plasmid is active. Activation-induced deaminase (AID) was used as a marker to identify existing B cell lines as possible candidates for supporting CSR. The M12 and A20 cell lines were identified as AID positive and, following activation with CD40L and other activators, were found to differentially support mu --> epsilon and mu --> alpha plasmid-based CSR. These studies provide evidence for two new switching activities for mu --> gamma1 and mu --> epsilon CSR, which are distinct from mu --> gamma3 and mu --> alpha switching activities previously described. AID is expressed in all the B cell lines capable of CSR, but cannot account for the isotype specificity defined by the S plasmid assay. These results are consistent with a model in which isotype-specific switching factors are either isotype-specific recombinases or DNA binding proteins with sequence specificity for S DNA.  相似文献   

8.
Activation-induced cytidine deaminase (AID) and uracil DNA glycosylase (UNG) are required for class switch recombination (CSR). AID is involved in the DNA cleavage step of CSR, but the precise role of UNG is not yet understood. Mutations and deletions are footprints of abortive DNA cleavage in the immunoglobulin switch region in splenic B cells stimulated to undergo CSR. However, a UNG deficiency did not reduce the number of such footprints, indicating UNG is dispensable for the DNA cleavage step. Mutagenesis experiments revealed that the role of UNG in CSR depends on its WXXF motif. This motif is also essential for the interaction of UNG with the HIV viral peptide Vpr, which recruits UNG to the HIV particle. Furthermore, exogenous Vpr had a dominant-negative effect on CSR. These results suggest that UNG is recruited to the CSR machinery through its WXXF motif by a Vpr-like host factor and plays a novel non-canonical role in a CSR step that follows DNA cleavage.  相似文献   

9.
10.
11.
12.
Class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes are initiated by the activation-induced cytosine deaminase AID. The resulting uracils in Ig genes were believed to be removed by the uracil glycosylase (UNG) and the resulting abasic sites treated in an error-prone fashion, creating breaks in the Ig switch regions and mutations in the variable regions. A recent report suggests that UNG does not act as a glycosylase in CSR and SHM but rather has unknown activity subsequent to DNA breaks that were created by other mechanisms.  相似文献   

13.
Cheng CP  Nagy PD 《Journal of virology》2003,77(22):12033-12047
RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses.  相似文献   

14.
15.
16.
17.
18.
Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.  相似文献   

19.
Mismatch repair (MMR) proteins are important for antibody class-switch recombination (CSR), but their roles are unknown. We propose a model for the function of MMR in CSR in which MMR proteins convert single-strand nicks instigated by activation-induced cytidine deaminase (AID) into the double-strand breaks (DSBs) that are required for CSR. This model does not invoke any novel functions for MMR but simply posits that, owing to numerous single-strand nicks in the switch (S) regions of both DNA strands, when MMR proteins are recruited by U:G mismatches, they excise one strand of DNA and soon reach a nick on the opposite strand. This halts excision activity and creates a DSB. This model explains why B cells that lack either S mu and MSH2 or UNG and MSH2 cannot undergo CSR.  相似文献   

20.
An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号