首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight rapid Poly R-478 dye-decolorizing isolates from The Netherlands were screened in this study for the biodegradation of polycyclic aromatic hydrocarbons (PAH) supplied at 10 mg liter(-1). Several well-known ligninolytic culture collection strains, Phanerochaete chrysosporium BKM-F-1767, Trametes versicolor Paprican 52, and Bjerkandera adusta CBS 595.78 were tested in parallel. All of the strains significantly removed anthracene, and nine of the strains significantly removed benzo(a)pyrene beyond the limited losses observed in sterile liquid and HgCl2-poisoned fungus controls. One of the new isolates, Bjerkandera sp. strain Bos 55, was the best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these compounds after 28 days, respectively. Half of the strains, exemplified by strains of the genera Bjerkandera and Phanerochaete, converted anthracene to anthraquinone, which was found to be a dead-end metabolite, in high yields. The extracellular fluids of selected strains were shown to be implicated in this conversion. In contrast, four Trametes strains removed anthracene without significant accumulation of the quinone. The ability of Trametes strains to degrade anthraquinone was confirmed in this study. None of the strains accumulated PAH quinones during benzo(a)pyrene degradation. Biodegradation of PAH by the various strains was highly correlated to the rate by which they decolorized Poly R-478 dye, demonstrating that ligninolytic indicators are useful in screening for promising PAH-degrading white rot fungal strains.  相似文献   

2.
A recently isolated white-rot strain, Bjerkandera sp. strain BOS55, displays high extracellular peroxidase activity, and rapidly degrades polycyclic aromatic hydrocarbons (PAH). In this study, the culture conditions for the biodegradation of the model PAH compound, anthracene, were optimized with respect to O2, N, and C. An additional objective was to determine if the decolorization of the polymeric ligninolytic indicator dye, Poly R-478, could be correlated to anthracene biodegradation observed under a wide range of culture conditions. The supply of O2 was found to be the most important parameter in the biodegradation of anthracene. Increasing culture aeration enhanced the biodegradation of anthracene and the accumulation of its peroxidase-mediated oxidation product anthraquinone. Decolorization of Poly R-478 was less affected by inadequate aeration. Provided that ample aeration was supplied, the degradation of anthracene under different culture conditions was strongly correlated with the ligninolytic activity as indicated by the rate of Poly R-478 decolorization. Concentrations up to 22 mM NH4 + N did not repress anthracene biodegradation and only caused a 0%–40% repression of the Poly R-478 decolorizing activity in various experiments. A cosubstrate requirement of 100 mg glucose / mg anthracene biodegraded was observed in this study.  相似文献   

3.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

4.
Four sub-tropical white rot fungi, Trametes versicolor, Trametes pocas, Trametes cingulata and isolate DSPM95 were studied alongside the well studied white rot fungus, Phanerochaete chrysosporium, for their ability to remove polycyclic aromatic hydrocarbons (PAHs) from culture media. Both static shallow cultures and extracellular fluids were studied using media contaminated with a defined mixture of the PAHs; fluorene, phenanthrene, anthracene, pyrene and benzo(a)anthracene. With all isolates, the total loss of the parent compound in 31 days was high for fluorene, at +60%, phenanthrene at +40% and anthracene at +42%. Biotransformation of pyrene and benzo(a)anthracene by all the isolates was low, with the highest reduction of pyrene of 15.2% and benzo(a)anthracene of 15.8% being achieved with P. chrysosporium. Disappearance of the more condensed PAHs, pyrene and benzo(a)anthracene, increased in shallow static cultures with the addition of glucose and glucose oxidase as a source of additional H2O2. The addition of Mn2+ and ABTS (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) to culture supernatants was associated with higher levels of biotransformation. Comparison of the isolates T. versicolor, T. pocas, T. cingulata and isolate DSPM95 with P. chrysosporium showed that these strains were competitive in the reduction of the PAHs, reducing the PAHs by more or less the same magnitude. Also these sub-tropical isolates did not accumulate a lot of HPLC detectable metabolites as much as P. chrysosporium.  相似文献   

5.
The overproduction of ligninolytic peroxidase by the N-deregulated white rot fungus Bjerkandera sp. strain BOS55 under nitrogen-sufficient conditions had no noteworthy effect on the oxidation of anthracene or the decolorization of the polymeric aromatic dye Poly R-478 in 6-day-old cultures. Only when the endogenous production of H(inf2)O(inf2) was increased by the addition of extra oxygen and glucose could a 2.5-fold increase in the anthracene oxidation rate and a 6-fold increase in the Poly R-478 decolorization rate be observed in high-N cultures with 10- to 35-fold higher peroxidase activities than N-limited cultures. Further increase of the H(inf2)O(inf2) generation rate in high-N cultures with glucose oxidase led to an additional 3.5-fold increase in the anthracene oxidation rate (350 mg liter(sup-1) day(sup-1)) and a 10-fold increase in the Poly R-478 decolorization rate. These results indicate that xenobiotic compound oxidation by white rot fungi cannot be improved by overproducing peroxidases without increasing the endogenous production of H(inf2)O(inf2). The absence of Mn, which decreased the manganese peroxidase titers and increased the lignin peroxidase titers, was associated with up to 95% improvements in the anthracene oxidation rate. The simultaneous presence of Mn and veratryl alcohol was observed to have a synergistic negative effect on the oxidation of anthracene and the decolorization of Poly R-478.  相似文献   

6.
Twelve white-rot fungal strains belonging to seven different species were screened on plates under alkaline condition to study the decolourisation of the textile dyes Reactive Black 5 and Poly R-478. Three strains of Trametes versicolor (Micoteca da Universidade do Minho (MUM) 94.04, 04.100 and 04.101) and one strain of Phanerochaete chrysosporium (MUM 94.15) showed better decolourisation results. These four strains were used for decolourisation studies in liquid culture medium. All four selected strains presented more efficient decolourisation rates on Reactive Black 5 than on Poly R-478. For both dyes on solid and liquid culture media, the decolourisation capability exhibited by these strains depended on dye concentration and pH values of the media. Finally, the decolourisation of Reactive Black 5 by T. versicolor strains MUM 94.04 and 04.100 reached 100 %. In addition, the highest white-rot fungi ligninolytic enzyme activities were found for these two strains.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial and aquatic environments. In the present work, 2 colorimetric assays for laccase-catalyzed degradation of PAHs were developed based on studies of the oxidation of 12 aromatic hydrocarbons by fungal laccases from Trametes versicolor and Myceliophthora thermophila. Using a sodium borohydride water-soluble solution, the authors could reduce the single product of laccase-catalyzed anthracene biooxidation into the orange-colored 9,10-anthrahydroquinone, which is quantifiable spectrophotometrically. An assay using polymeric dye (Poly R-478) as a surrogate substrate for lignin degradation by laccase in the presence of mediator is also presented. The decolorization of Poly R-478 was correlated to the oxidation of PAHs mediated by laccases. This demonstrates that a ligninolytic indicator such as Poly R-478 can be used to screen for PAH-degrading laccases; it will also be useful in screening mutant libraries in directed evolution experiments. Poly R-478 is stable and readily soluble. It has a high extinction coefficient and low toxicity toward white rot fungi, yeast, and bacteria, which allow its application in a solid-phase assay format.  相似文献   

8.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAH) are persistent priority pollutants of soil and sediments. The use of white-rot fungi has been proposed as a means of bioremediating PAH-polluted sites. However, higher PAH compounds of low bioavailability in polluted soil are biodegraded slowly. In order to enhance their bioavailability, PAH solubilization, can be increased in water/solvent mixtures. The oxidation of a model PAH compound, anthracene, in the presence of cosolvents by the white-rot fungus, Bjerkandera sp. strain BOS55 was investigated. Acetone and ethanol at 5% were toxic to this fungus when added at the time of inoculation. However, when solvents up to 20% (v/v) were added to 9-day-old cultures, ligninolytic activity as indicated by Poly R-478 dye decolorization and anthracene oxidation was evident for several days. Since 20% solvent was toxic to cells, the oxidation of anthracene can be attributed to extracellular peroxidases, which were shown to tolerate the solvent. Solvent additions of 11%–21% (v/v) acetone or ethanol increased the rate of anthracene bioconversion to anthraquinone in liquid medium by a factor of 2–3 compared to fungal cultures receiving 1%–3% solvent.  相似文献   

10.
A survey to isolate native white rot basidiomycetes from Northeast Mexico was conducted in the forests of the Sierra Madre Oriental in the state of Nuevo León. A total of 92 isolates from at least 20 different genera, were screened on Bran-Flakes solid plate cultures for the production of ligninolytic oxidases and/or peroxidases with guaiacol and o-anisidine as substrates; their lignin depolymerizing potential using the polymeric dye Poly R 478; their ability to decolorize anthraquinonic (Remazol Brilliant Blue Reactive), azo (Acid Red 44) and triphenylmethane (Crystal Violet) dyes. Among all fungi tested, 15 isolates showed extensive decolorization of the three dyes within a week and gave a positive reaction in guaiacol and o-anisidine tests. Nine of them were also efficient degraders of Poly R-478. Two isolates (CS5 and CU1) showed decolorization of all dyes within 5 days, comparing favorably with reference strains of P. chrysosporium, Pleurotus ostreatus, and Bjerkandera adusta. Decolorization was associated with laccase activity in both isolates and reached 90% or more for all dyes within 24 h in 8-day-old liquid cultures. The coupling of pairs 2,4-dichlorophenol + 4-aminoantipyrine and 3-dimethylaminobenzoic acid + 3-methyl-2-benzothiazolinone hydrazone, strongly suggest that the laccases of both strains correspond to those considered of high redox potential. These strains are considered good candidates for bioremediation of dye polluted effluents due to their ligninolytic potential and decolorizing performance.  相似文献   

11.
Mycelia of Trametes versicolor were aseptically encapsulated in PVAL hydrogel beads of 1–2?mm diameter. The encapsulated mycelia were grown continuously in an aerated reactor under non-sterile conditions. After 65 days contamination of the PVAL hydrogel beads by bacteria was found only in the outer layer to a depth of 50?μm. The encapsulated fungi still expressed ligninolytic enzymes, as confirmed by the biotransformation of Poly R-478. Elimination of Poly R-478 by encapsulated Trametes versicolor reached an efficiency of up to 89%, which was due partially to biotransformation (65%) and partially to adsorption onto biomass (24%). PVAL-encapsulated mycelia of Trametes versicolor were viable for at least 6 months without nutrient supplementation, if stored at 7?°C in a refrigerator. By encapsulation Trametes versicolor was apparently protected against microbial contaminants and against mechanical stress, which is known to inactivate ligninolytic enzymes. Encapsulated Trametes versicolor might thus be applicable for bioremediation to serve as an inoculum for reactor systems or for field-side applications.  相似文献   

12.
The in vitro oxidation of the two polycyclic aromatic hydrocarbons anthracene and benzo[a]pyrene, which have ionization potentials of <=7.45 eV, is catalyzed by laccases from Trametes versicolor. Crude laccase preparations were able to oxidize both anthracene and the potent carcinogen benzo[a]pyrene. Oxidation of benzo[a]pyrene was enhanced by the addition of the cooxidant 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), while an increased anthracene oxidizing ability was observed in the presence of the low-molecular-weight culture fluid ultrafiltrate. Two purified laccase isozymes from T. versicolor were found to have similar oxidative activities towards anthracene and benzo[a]pyrene. Oxidation of anthracene by the purified isozymes was enhanced in the presence of ABTS, while ABTS was essential for the oxidation of benzo[a]pyrene. In all cases anthraquinone was identified as the major end product of anthracene oxidation. These findings indicate that laccases may have a role in the oxidation of polycyclic aromatic hydrocarbons by white rot fungi.  相似文献   

13.
The decolorizing capacity of 26 white rot fungi from Argentina was investigated. Extracellular production of ligninolytic enzymes by mycelium growing on solid malt extract/glucose medium supplemented with different dyes (Malachite Green, Azure B, Poly R-478, Anthraquinone Blue, Congo Red and Xylidine), dye decolorization and the relationship between these two processes were studied. Only ten strains decolorized all the dyes, all ten strains produced laccase, lignin peroxidase and manganese peroxidase on solid medium. However, six of the strains could not decolorize any of the dyes; all six strains tested negative for lignin peroxidase, and produced less than 0.05 U/g agar of manganese peroxidase. Comparing the isolates with the well-known dye-degrader Phanerochaete chrysosporium, a new fungus was identified: Coriolus versicolor f. antarcticus, potentially a candidate for use in biodecoloration processes. Eighteen day-old cultures of this fungus were able to decolorize in an hour 28%, 30%, 43%, 88% and 98% of Xylidine (24 mg/l), Poly R-478 (75 mg/l), Remazol Brilliant Blue R (9 mg/l), Malachite Green (6 mg/l) and Indigo Carmine (23 mg/l), respectively. Laccase activity was 0.13 U/ml, but neither lignin peroxidase nor manganese peroxidase were detected in the extracellular fluids for that day of incubation.  相似文献   

14.
Selected strains of three species of white rot fungi, Pleurotus ostreatus, Phanerochaete chrysosporium and Trametes versicolor, were grown in sterilized soil from straw inocula. The respective colonization rates and mycelium density values decreased in the above mentioned order. Three- and four-ringed PAHs at 50 ppm inhibited growth of fungi in soil to some extent. The activities of fungal MnP and laccase (units per g dry weight of straw or soil), extracted with 50 mM succinate-lactate buffer (pH 4.5), were 5 to 20-fold higher in straw compared to soil. The enzyme activities per g dry soil in P. ostreatus and T. versicolor were similar, in contrast to P. chrysosporium, where they were extremely low. Compared to the aerated controls, P. ostreatus strains reduced the levels of anthracene, pyrene and phenanthrene by 81–87%, 84–93% and 41–64% within 2 months, respectively. During degradation of anthracene, all P. ostreatus strains accumulated anthraquinone. PAH removal rates in P. chrysosporium and T. versicolor soil cultures were much lower.  相似文献   

15.
With the focus on alternative microbes for soil-bioremediation, 18 species of litter-decomposing basidiomycetous fungi were screened for their ability to grow on different lignocellulosic substrates including straw, flax and pine bark as well as to produce ligninolytic enzymes, namely laccase and manganese peroxidase. Following characteristics have been chosen as criteria for the strain selection: (i) the ability to grow at least on one of the mentioned materials, (ii) production of either of the ligninolytic enzymes and (iii) the ability to invade non-sterile soil. As the result, eight species were selected for a bioremediation experiment with an artificially contaminated soil (total polycyclic aromatic hydrocarbon (PAH) concentration 250 mg/kg soil). Up to 70%, 86% and 84% of benzo(a)anthracene, benzo(a)pyrene, and dibenzo(a,h)anthracene, respectively, were removed in presence of fungi while the indigenous microorganisms converted merely up to 29%, 26% and 43% of these compounds in 30 days. Low molecular-mass PAHs studied were easily degraded by soil microbes and only anthracene degradation was enhanced by the fungi as well. The agaric basidiomycetes Stropharia rugosoannulata and Stropharia coronilla were the most efficient PAH degraders among the litter-decomposing species used.  相似文献   

16.
Summary This work represents the first report on the ability of autochthonous fungi from Tunisia to produce ligninolytic enzymes. Three hundred and fifteen fungal strains were isolated from different Tunisian biotopes. These fungal strains were firstly screened on solid media containing Poly R-478 or ABTS as indicator compounds that enabled the detection of lignin-modifying enzymes as specific color reactions. Of the 315 tested strains, 49 exhibited significant ABTS-oxidation activity expressed within the first week of incubation and only 18 strains decolorized the Poly R-478. Liquid cultivations and laccase, manganese peroxidase and lignin peroxidase activity assays of positive strains confirmed that eight efficient enzyme producers were found in the screening. These strains were attributed to the most closely related species using PCR amplification and sequencing of the internal transcribed spacer ‘ITS’ regions of the ribosomal DNA. The identification results showed fungal genera such as Oxyporus, Stereum and Trichoderma which have been only rarely reported as ligninolytic enzyme producers in the literature. Culture conditions and medium composition were optimized for the laccase producer Trametes trogii CTM 10156. This optimization resulted in high laccase production, 367 times more than in non-optimized conditions and which reached 110 U ml-1 within 15 days of incubation.  相似文献   

17.
White rot fungi can oxidize surfactant solubilized polycyclic aromatic hydrocarbons (PAH). The objective of this study was to evaluate the performance of immobilized white rot fungus, Phanerochaete chrysosporium, to remove surfactant Tween 80 solubilized PAH i.e. phenanthrene, pyrene and benzo(alpha)pyrene in a rotating biological contactor (RBC) reactor. Results indicated that the immobilized P. chrysosporium in the RBC reactor system in continuous operation could effectively remove the three tested PAH at specific hydraulic loading rates and concentrations tested for each individual PAH. Batch operation of RBC reactor showed that the immobilized P. chrysosporium was stable and effective for the eight successive batch treatments of PAH in solution medium i.e. PAH removal was greater than 90% after 60 h, although only low levels of ligninolytic enzyme activity were detected. The removal of phenanthrene and pyrene in solution medium has been found to be a first order reaction in batch operation. A mass balance calculation indicated that biological oxidation was the main factor for removal of benzo(alpha)pyrene i.e. 95.7% in the RBC reactor. However, for phenanthrene and pyrene, both biological oxidation (i.e. 49 and 56%, respectively) and RBC disc foam adsorption (i.e. 44 and 34%, respectively) made a significant contribution to the removal of PAH.  相似文献   

18.
Laccases produced by white rot fungi are capable of rapidly oxidizing benzo[a]pyrene. We hypothesize that the polycyclic aromatic hydrocarbon (PAH)-degrading bacteria producing laccase can enhance the degree of benzo[a]pyrene mineralization. However, fungal laccases are glycoproteins which cannot be glycosylated in bacteria, and there is no evidence to show that bacterial laccases can oxidize benzo[a]pyrene. In this study, the in vitro oxidation of PAHs by crude preparations of the bacterial laccase, CueO, from Escherichia coli was investigated. The results revealed that the crude CueO catalyzed the oxidation of anthracene and benzo[a]pyrene in the same way as the fungal laccase from Trametes versicolor, but showed specific characteristics such as thermostability and copper dependence. In the presence of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), high amounts of anthracene and benzo[a]pyrene, 80% and 97%, respectively, were transformed under optimal conditions of 60°C, pH 5, and 5 mmol l(-1) CuCl(2) after a 24-h incubation period. Other PAHs including fluorene, acenaphthylene, phenanthrene, and benzo[a]anthracene were also oxidized by the crude CueO. These findings indicated the potential application of prokaryotic laccases in enhancing the mineralization of benzo[a]pyrene by PAH-degrading bacteria.  相似文献   

19.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO(2) by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [(14)C]benzo[a]pyrene was recovered as (14)CO(2) in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

20.
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号