共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mechanisms of iron–sulfur cluster assembly: the SUF machinery 总被引:5,自引:0,他引:5
M. Fontecave S. Ollagnier de Choudens B. Py F. Barras 《Journal of biological inorganic chemistry》2005,10(7):713-721
Biosynthesis of iron-sulfur clusters is a cellular process which depends on complex protein machineries. Escherichia coli contains two such biosynthetic systems, ISC and SUF. In this review article we specifically make a presentation of the various Suf proteins and discuss the molecular mechanisms by which these proteins work together to assemble Fe and S atoms within a scaffold and to transfer the resulting cluster to target proteins. An erratum to this article can be found at 相似文献
3.
SlyD from Escherichia coli is a peptidyl–prolyl cis–trans isomerase involved in [Ni–Fe] hydrogenase metallocentre assembly in bacteria. We present here the backbone and side chain
assignments for E. coli SlyD. 相似文献
4.
5.
6.
7.
Pedro Serrano Margaret A. Johnson Amarnath Chatterjee Bill Pedrini Kurt Wüthrich 《Biomolecular NMR assignments》2008,2(2):135-138
Sequence-specific NMR assignments of the globular core comprising the residues 1066–1181 within the non-structural protein nsp3e from the SARS coronavirus have been obtained using triple-resonance NMR experiments with the uniformly [13C, 15N]-labeled protein. The backbone and side chain assignments are nearly complete, providing the basis for the ongoing NMR structure determination. A preliminary identification of regular secondary structures has been derived from the 13C chemical shifts. 相似文献
8.
9.
10.
11.
12.
Alistair J. Fielding Kristian Parey Ulrich Ermler Silvan Scheller Bernhard Jaun Marina Bennati 《Journal of biological inorganic chemistry》2013,18(8):905-915
Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31–39CCX35–36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) 57Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four 57Fe hyperfine couplings to the cluster in all three proteins. 13C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. 57Fe resonances in all three systems revealed unusually large 57Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster’s unique magnetic properties arise from the CCG binding motif. 相似文献
13.
14.
15.
16.
Sabine Gus-Mayer Harald Brunner Hansjörg A. W. Schneider-Poetsch Wolfhart Rüdiger 《Plant molecular biology》1994,26(3):909-921
A protein consisting of 60 kDa subunits (As-P60) was isolated from etiolated oat seedlings (Avena sativa L.) and characterized as avenacosidase, a -glucosidase that belongs to a preformed defence system of oat against fungal infection. The enzyme is highly aggregated; it consists of 300–350 kDa aggregates and multimers thereof. Dissociation by freezing/thawing leads to complete loss of enzyme activity. The specificity of the enzyme was investigated with para-nitrophenyl derivatives which serve as substrates, in decreasing order -fucoside, -glucoside, -galactoside, -xyloside. The corresponding orthonitrophenyl glycosides are less well accepted. No hydrolysis was found with -glycosides and -thioglucoside. An anti-As-P60 antiserum was prepared and used for isolation of a cDNA clone coding for As-P60. A presequence of 55 amino acid residues was deduced from comparison of the cDNA sequence with the N-terminal sequence determined by Edman degradation of the mature protein. The presequence has the characteristics of a stroma-directing signal peptide; localization of As-P60 in plastids of oat seedlings was confirmed by western blotting. The amino acid sequence revealed significant homology (>39% sequence identity) to -glucosidases that are constituents of a defence mechanism in dicotyledonous plants. 34% sequence identity was even found with mammalian and bacterial -glucosidases of the BGA family. Avenacosidase extends the occurrence of this family of -glucosidases to monocotyledonous plants. 相似文献
17.
18.
The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron–sulfur (Fe–S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe–S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells. 相似文献
19.