首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-matrix FT projection NMR spectroscopy was employed for resonance assignment of the 79-residue subunit c of the Escherichia coli F1F0 ATP synthase embedded in micelles formed by lyso palmitoyl phosphatidyl glycerol (LPPG). Five GFT NMR experiments, that is, (3,2)D HNNCO, L-(4,3)D HNNC αβ C α, L-(4,3)D HNN(CO)C αβ C α, (4,2)D HACA(CO)NHN and (4,3)D HCCH, were acquired along with simultaneous 3D 15N, 13Caliphatic, 13Caromatic-resolved [1H,1H]-NOESY with a total measurement time of ∼43 h. Data analysis resulted in sequence specific assignments for all routinely measured backbone and 13Cβ shifts, and for 97% of the side chain shifts. Moreover, the use of two G2FT NMR experiments, that is, (5,3)D HN{N,CO}{C αβ C α} and (5,3)D {C αβ C α}{CON}HN, was explored to break the very high chemical shift degeneracy typically encountered for membrane proteins. It is shown that the 4D and 5D spectral information obtained rapidly from GFT and G2FT NMR experiments enables one to efficiently obtain (nearly) complete resonance assignments of membrane proteins. Qi Zhang, Hanudatta S. Atreya, Douglas E. Kamen, Mark E. Girvin and Thomas Szyperski—New York Consortium on Membrane Protein Structure.  相似文献   

2.
A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify 1H/13C sugar spin systems in 13C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of 13C?C1H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1??- and 3??-CH signal dispersion for complete spin system identification including 5??-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3??-untranslated region of the pre-mRNA of human U1A protein.  相似文献   

3.
Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins.  相似文献   

4.
(4,3)D, (5,3)D and (5,2)D GFT triple resonance NMR experiments are presented for polypeptide backbone and (13)C(beta) resonance assignment of (15)N/(13)C labeled proteins. The joint sampling of m = 2, 3 or 4 indirect chemical shift evolution periods of 4D and 5D NMR experiments yields the measurement of 2(m) - 1 linear combinations of shifts. To obtain sequential assignments, these are matched in corresponding experiments delineating either intra or interresidue correlations. Hence, an increased set of matches is registered when compared to conventional approaches, and the 4D or 5D information allows one to efficiently break chemical shift degeneracy. Moreover, comparison of single-quantum chemical shifts obtained after a least squares fit using either the intra or the interresidue data demonstrates that GFT NMR warrants highly accurate shift measurements. The new features of GFT NMR based resonance assignment strategies promise to be of particular value for establishing automated protocols.  相似文献   

5.
Overlap of NMR signals is the major cause of difficulties associated with NMR structure elucidation of molecules contained in complex mixtures. A 2D homonuclear correlation spectroscopy in particular suffers from low dispersion of 1H chemical shifts; larger dispersion of 13C chemical shifts is often used to reduce this overlap, while still providing the proton–proton correlation information e.g. in the form of a 2D 1H, 13C HSQC-TOCSY experiment. For this methodology to work, 13C chemical shift must be resolved. In case of 13C chemical shifts overlap, 1H chemical shifts can be used to achieve the desired resolution. The proposed (3, 2)D 1H, 13C BIRDr,X-HSQC-TOCSY experiment achieves this while preserving singlet character of cross peaks in the F1 dimension. The required high-resolution in the 13C dimension is thus retained, while the cross peak overlap occurring in a regular HSQC-TOCSY experiment is eliminated. The method is illustrated on the analysis of a complex carbohydrate mixture obtained by depolymerisation of a fucosylated chondroitin sulfate isolated from the body wall of the sea cucumber Holothuria forskali.  相似文献   

6.
Reductive methylation of lysine residues in proteins offers a way to introduce 13C methyl groups into otherwise unlabeled molecules. The 13C methyl groups on lysines possess favorable relaxation properties that allow highly sensitive NMR signal detection. One of the major limitations in the use of reductive methylation in NMR is the signal overlap of 13C methyl groups in NMR spectra. Here we show that the uniform influence of the solvent on chemical shifts of exposed lysine methyl groups could be overcome by adjusting the pH of the buffering solution closer to the pKa of lysine side chains. Under these conditions, due to variable pKa values of individual lysine side chains in the protein of interest different levels of lysine protonation are observed. These differences are reflected in the chemical shift differences of methyl groups in reductively methylated lysines. We show that this approach is successful in four different proteins including Ca2+-bound Calmodulin, Lysozyme, Ca2+-bound Troponin C, and Glutathione S-Transferase. In all cases significant improvement in NMR spectral resolution of methyl signals in reductively methylated proteins was obtained. The increased spectral resolution helps with more precise characterization of protein structural rearrangements caused by ligand binding as shown by studying binding of Calmodulin antagonist trifluoperazine to Calmodulin. Thus, this approach may be used to increase resolution in NMR spectra of 13C methyl groups on lysine residues in reductively methylated proteins that enhances the accuracy of protein structural assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
We present a new method for rapid NMR data acquisition and assignments applicable to unlabeled (12C) or 13C-labeled biomolecules/organic molecules in general and metabolomics in particular. The method involves the acquisition of three two dimensional (2D) NMR spectra simultaneously using a dual receiver system. The three spectra, namely: (1) G-matrix Fourier transform (GFT) (3,2)D [13C, 1H] HSQC–TOCSY, (2) 2D 1H–1H TOCSY and (3) 2D 13C–1H HETCOR are acquired in a single experiment and provide mutually complementary information to completely assign individual metabolites in a mixture. The GFT (3,2)D [13C, 1H] HSQC–TOCSY provides 3D correlations in a reduced dimensionality manner facilitating high resolution and unambiguous assignments. The experiments were applied for complete 1H and 13C assignments of a mixture of 21 unlabeled metabolites corresponding to a medium used in assisted reproductive technology. Taken together, the experiments provide time gain of order of magnitudes compared to the conventional data acquisition methods and can be combined with other fast NMR techniques such as non-uniform sampling and covariance spectroscopy. This provides new avenues for using multiple receivers and projection NMR techniques for high-throughput approaches in metabolomics.  相似文献   

8.
Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/JCC=28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1 J N,CO and 1,2 J N,CA coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.  相似文献   

9.
In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional 13C labeling of OmpX and [13C,1H]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a 1H frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.  相似文献   

10.
NMR studies of the conformation of the natural sweetener rebaudioside A   总被引:1,自引:0,他引:1  
Rebaudioside A is a natural sweetener from Stevia rebaudiana in which four β-d-glucopyranose units are attached to the aglycone steviol. Its 1H and 13C NMR spectra in pyridine-d5 were assigned using 1D and 2D methods. Constrained molecular dynamics of solvated rebaudioside using NMR constraints derived from ROESY cross peaks yielded the orientation of the β-d-glucopyranose units. Hydrogen bonding was examined using the temperature coefficients of the hydroxyl chemical shifts, ROESY and long-range COSY spectra, and proton-proton coupling constants.  相似文献   

11.
In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of 13C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly 13C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-13C)-sucrose, 342 Da] and one compound of medium molecular weight (13C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The 13C resonances are traced using 13C–13C correlations from homonuclear experiments, such as (H)CC–CT–COSY, (H)CC–NOESY, CC–CT–TOCSY and/or virtually decoupled (H)CC–TOCSY. Based on the assignment of the 13C resonances, the 1H chemical shifts are derived in a straightforward manner using one-bond 1H–13C correlations from heteronuclear experiments (HC–CT–HSQC). In order to avoid the 1 J CC splitting of the 13C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either 13C or 1H detected experiments, namely CC–CT–COSY, band-selective (H)CC–TOCSY, HC–CT–HSQC–NOESY or long-range HC–CT–HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the 1H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the 13C-enriched polysaccharide were assigned by using HC–H2BC spectra. The assignment of the N-acetyl groups with 15N at natural abundance was completed by using HN–SOFAST–HMQC, HNCA, HNCO and 13C-detected (H)CACO spectra.  相似文献   

12.
13C spin diluted protein samples can be produced using [1-13C] and [2-13C]-glucose (Glc) carbon sources in the bacterial growth medium. The 13C spin dilution results in favorable 13C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-13C]- and [2-13C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-13C]-glycerol (13C labeled Cα sites on a 12C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17–26, 2011 ). Inspired by this approach and our own recent results using [2-13C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of 13C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.  相似文献   

13.
We present a gradient selected and doubly sensitivity-enhanced DE-MQ–(H)CC m H m –TOCSY experiment for the sequence-specific assignment of methyl resonances in 13C,15N labeled proteins. The proposed experiment provides improved sensitivity and artifact suppression relative to the phase-cycled experiments. One part of the 13Cchemical shift evolution takes place under heteronuclear multiple quantum coherence, whereas the other part occurs under 13C single quantum coherence in a semi-constant time fashion. The feasibility of the experiment was assessed using 15N,13C labeled Mus musculus coactosin (16 kDa), having a rotational correlation time of 14.5 ns at 15 °C in D2O. A 16-h experiment on 600 MHz 1H yielded good quality data and enabled the assignment of 70 out of 72 methyl groups in coactosin. As well as being an improved approach for methyl resonance assignment, this experiment can also be highly valuable for the rapid assignment of methyl resonances in SAR by NMR studies.  相似文献   

14.
We present two time-shared experiments that enable the characterization of all nOes in 1H–13C-ILV methyl-labelled proteins that are otherwise uniformly deuterated and 15N enriched and possibly selectively protonated for distinct residue types. A 3D experiment simultaneously provides the spectra of a 3D NOESY-HN-TROSY and of a 3D NOESY-HC-PEP-HSQC. Thus, nOes from any protons to methyl or amide protons are dispersed with respect to 15N and 13C chemical shifts, respectively. The single 4D experiment presented here yields simultaneously the four 4D experiments HC-HSQC-NOESY-HC-PEP-HSQC, HC-HSQC-NOESY-HN-TROSY, HN-HSQC-NOESY-HN-TROSY and HN-HSQC-NOESY-HC-PEP-HSQC. This allows for the unambiguous determination of all nOes involving amide and methyl protons. The method was applied to a (1H,13C)-ILV−(1H)-FY-(U−2H,15N) sample of a 37 kDa di-domain of the E. coli enterobactin synthetase module EntF.  相似文献   

15.
The ability to simultaneously measure many long-range distances is critical to efficient and accurate determination of protein structures by solid-state NMR (SSNMR). So far, the most common distance constraints for proteins are 13C–15N distances, which are usually measured using the rotational-echo double-resonance (REDOR) technique. However, these measurements are restricted to distances of up to ~?5 Å due to the low gyromagnetic ratios of 15N and 13C. Here we present a robust 2D 13C–19F REDOR experiment to measure multiple distances to ~?10 Å. The technique targets proteins that contain a small number of recombinantly or synthetically incorporated fluorines. The 13C–19F REDOR sequence is combined with 2D 13C–13C correlation to resolve multiple distances in highly 13C-labeled proteins. We show that, at the high magnetic fields which are important for obtaining well resolved 13C spectra, the deleterious effect of the large 19F chemical shift anisotropy for REDOR is ameliorated by fast magic-angle spinning and is further taken into account in numerical simulations. We demonstrate this 2D 13C–13C resolved 13C–19F REDOR technique on 13C, 15N-labeled GB1. A 5-19F-Trp tagged GB1 sample shows the extraction of distances to a single fluorine atom, while a 3-19F-Tyr labeled GB1 sample allows us to evaluate the effects of multi-spin coupling and statistical 19F labeling on distance measurement. Finally, we apply this 2D REDOR experiment to membrane-bound influenza B M2 transmembrane peptide, and show that the distance between the proton-selective histidine residue and the gating tryptophan residue differs from the distances in the solution NMR structure of detergent-bound BM2. This 2D 13C–19F REDOR technique should facilitate SSNMR-based protein structure determination by increasing the measurable distances to the ~?10 Å range.  相似文献   

16.
Several techniques for spectral editing of 2D 13C?C13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N?CCO peaks through 13C?C15N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH2) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other ??-pulse is shifted from the center of a rotor period tr by about 0.15 tr. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled 13C?C1H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via 13C spin exchange. The efficiencies of these spectral editing techniques range from 60?% for the COO and dynamic selection experiments to 25?% for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.  相似文献   

17.
Microbial transformations by a Bacillus sp. were employed as a means of preparing potentially important derivatives of progesterone and testosterone. Each microbial metabolite was subjected to structure elucidation employing 1H and 13C nmr, mass spectral and cd analysis. Hplc was used for the determination of the percentages of the metabolites formed. The progesterone metabolites were characterised as 14-hydroxy-4-pregnene-3,20-dione (II), 14-hydroxy-5 α -pregnane-3,6,20-trione (III)., 11 α — hydroxy-5 α — pregnane-3, 6,20-trione (IV) and 11 α, 14-dihydroxy-4-pregnene-3,20-dione (V). The testosterone analogs were identified as 4-androstene-3,17-dione (VII), 17 β-hydroxy-5 α -androstene-3,6-dione (VIII), 14-hydroxy-4-androstene-3,17-dione (IX) and 14, 17 β-dihydroxy-4-androsten -3-one (X)1. The availability of the metabolites enabled complete elucidation of their 13C nmr spectra.  相似文献   

18.
A method that combines NMR spectral and structural information into a constructed three-dimensional (3D)-connectivity matrix is developed for modeling biological binding activity of small molecules. The 3D-connectivity matrix for a molecule is defined by associating the distances between all possible carbon-to-carbon connections with their assigned carbon NMR chemical shifts. In this project we selected from the total 3D-connectivity matrix a subset, the two-dimensional (2D) (13)C-(13)C COSY and a theoretical long range 2D (13)C-(13)C distance connectivity spectral plane. Patterns of (13)C chemical shifts observed at these two relative distances for 50 steroids were used to produce a mathematical relationship for the steroids' relative binding affinity (pK(i)) to the aromatase enzyme. We call this technique comparative structural connectivity spectra analysis (CoSCoSA) modeling. Using combinations of the 2D COSY and 2D long-range distance spectra as modeling parameters, we built four CoSCoSA models. One model was made from the 2D COSY spectra alone and another was developed using only the 2D long-range distance spectra. Then the COSY and long-distance spectra were combined in two different ways: starting with the combined principal components (PCs) from the separately calculated COSY and distance spectra or using the combined raw spectra (3D). The best CoSCoSA model was based on the combined PCs from COSY and distance spectra. This model had an r(2) of 0.96 and a leave-one-out cross-validation (q(2)) of 0.92. In general CoSCoSA modeling combines the quantum mechanical information inherent in NMR chemical shifts with internal molecular atom-to-atom distances to give a reliable and straightforward basis for predictive modeling. The technique has the flexibility and accuracy to outperform not only the cross-validated variance q(2) of previously published quantitative structure-activity relationships (QSAR) but also those obtained by related quantitative spectral data-activity relationships (QSDARs) lacking connectivity dimensions.  相似文献   

19.
A novel three-dimensional (3D) HCCH NMR experiment is introduced. It involves 13C-13C COSY or TOCSY coherence transfer plus two independent editing steps according to the number of protons attached to the individual carbons before and after the 13C-13C homonuclear mixing. This double editing leads to simplification of HCCH protein side chain spectra that otherwise are prone to spectral overlap. Another interesting feature is amino acid selectivity, i.e. that the presence of certain correlations in a doubly edited HCCH subspectrum gives a clue as to assignment to a particular subgroup of amino acids or segments thereof. Finally, the selection of two different multiplicities in the two editing steps leads to diagonal peak suppression in the 1H-1H (3D spectrum recorded with two 1H and one 13C dimension) or the 13C-13C (3D spectrum recorded with one 1H and two 13C dimensions) two-dimensional projection. The new experiment is demonstrated using a 13C,15N-labeled protein sample, chymotrypsin inhibitor 2, at 500 MHz.  相似文献   

20.
A new TROSY relayed HCCH-COSY pulse sequence is introduced for correlating adenine H2 and H8 resonances in 13C-labeled RNA molecules. The pulse scheme provides substantial improvements in signal-to-noise compared to previously suggested experiments, and therefore will be suitable for NMR studies of larger RNA molecules. The experiment provides 13C chemical shifts for all carbon nuclei in the adenine base. This is advantageous for resolving spectral overlap in larger RNA molecules and provides a starting point for measuring additional parameters for these carbons in the adenine spin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号