首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet’s membrane, in the posterior cornea.

Methodology/Principal Findings

We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet’s membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats.

Conclusions/Significance

Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.  相似文献   

2.
The second harmonic generation (SHG) signal intensity sourced from skeletal muscle myosin II strongly depends on the polarization of the incident laser beam relative to the muscle fiber axis. This dependence is related to the second-order susceptibility χ(2), which can be described by a single component ratio γ under generally assumed symmetries. We precisely extracted γ from SHG polarization dependence curves with an extended focal field model. In murine myofibrillar preparations, we have found two distinct polarization dependencies: With the actomyosin system in the rigor state, γrig has a mean value of γrig = 0.52 (SD = 0.04, n = 55); in a relaxed state where myosin is not bound to actin, γrel has a mean value of γrel = 0.24 (SD = 0.07, n = 70). We observed a similar value in an activated state where the myosin power stroke was pharmacologically inhibited using N-benzyl-p-toluene sulfonamide. In summary, different actomyosin states can be visualized noninvasively with SHG microscopy. Specifically, SHG even allows us to distinguish different actin-bound states of myosin II using γ as a parameter.  相似文献   

3.
The purpose of this study was to image and quantify the structural changes of corneal edema by second harmonic generation (SHG) microscopy. Bovine cornea was used as an experimental model to characterize structural alterations in edematous corneas. Forward SHG and backward SHG signals were simultaneously collected from normal and edematous bovine corneas to reveal the morphological differences between them. In edematous cornea, both an uneven expansion in the lamellar interspacing and an increased lamellar thickness in the posterior stroma (depth > 200 μm) were identified, whereas the anterior stroma, composed of interwoven collagen architecture, remained unaffected. Our findings of heterogeneous structural alteration at the microscopic scale in edematous corneas suggest that the strength of collagen cross-linking is heterogeneous in the corneal stroma. In addition, we found that qualitative backward SHG collagen fiber imaging and depth-dependent signal decay can be used to detect and diagnose corneal edema. Our work demonstrates that SHG imaging can provide morphological information for the investigation of corneal edema biophysics, and may be applied in the evaluation of advancing corneal edema in vivo.  相似文献   

4.
5.
Instability in perovskite solar cells is the main challenge for the commercialization of this solar technology. Here, a contactless, nondestructive approach is reported to study degradation across perovskite and perovskite/silicon tandem solar cells. The technique employs spectrally and spatially resolved absorptivity at sub‐bandgap wavelengths of perovskite materials, extracted from their luminescence spectra. Parasitic absorption in other layers, carrier diffusion, and photon smearing phenomena are all demonstrated to have negligible effects on the extracted absorptivity. The absorptivity is demonstrated to reflect real degradation in the perovskite film and is much more robust and sensitive than its luminescence spectral peak position, representing its optical bandgap, and intensity. The technique is applied to study various common factors which induce and accelerate degradation in perovskite solar cells including air and heat exposure and light soaking. Finally, the technique is employed to extract the individual absorptivity component from the perovskite layer in a monolithic perovskite/silicon tandem structure. The results demonstrate the value of this approach for monitoring degradation mechanisms in perovskite and perovskite/silicon tandem cells at early stages of degradation and various fabrication stages.  相似文献   

6.
Otoliths taken from fish from Eden Lake, Manitoba show yellow–green and red cathodoluminescence of varying intensity that corresponds to their annular structure. Proton-induced X-ray emission analysis shows manganese (Mn) concentrations of between 2 and 205ppm, zinc (Zn) concentrations between 2 and 290ppm and strontium (Sr) concentrations up to 1500ppm in the otoliths. The distribution of luminescence correlates with the distribution of Mn. The Mn, Zn and Sr are likely derived from the monzonitic rocks surrounding the lake. Variations in the distribution of cathodoluminescence may be a useful tool for evaluating changes in environmental chemistry and fish life histories.  相似文献   

7.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

8.
9.
10.

During the past decades, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Although most of the works concerned bacteria, AFM also permitted major breakthroughs in the understanding of physiology and pathogenic mechanisms of some fungal species associated with cystic fibrosis. Complementary to electron microscopies, AFM offers unprecedented insights to visualize the cell wall architecture and components through three-dimensional imaging with nanometer resolution and to follow their dynamic changes during cell growth and division or following the exposure to drugs and chemicals. Besides imaging, force spectroscopy with piconewton sensitivity provides a direct means to decipher the forces governing cell–cell and cell–substrate interactions, but also to quantify specific and non-specific interactions between cell surface components at the single-molecule level. This nanotool explores new ways for a better understanding of the structures and functions of the cell surface components and therefore may be useful to elucidate the role of these components in the host–pathogen interactions as well as in the complex interplay between bacteria and fungi in the lung microbiome.

  相似文献   

11.
B?rquez, A. 1987. Leaf thickness and water deficit in plants:a tool for field studies.—J. exp. Bot. 38: 109–114. A technique for estimating plant water deficits using a relativelyinexpensive micrometer to measure leaf thickness was developed.A strong correlation was found between leaf thickness and relativewater content (RWC) in Brassica napus, Mirabilis jalapa, Phaseolusvulgaris and Impatiens parviflora. Although leaf thickness ata given RWC varied between plants, it increased linearly withleaf RWC, the rate of change being similar in leaves of plantsof the same age and species. Due to this relationship, the constructionof a pressure-volume curve makes possible the estimation ofleaf water potential. In this case a calibration curve is neededfor each population studied or, for the highest accuracy, foreach individual. The technique is particularly useful in fieldconditions where other techniques are not reliable because ofdifficulties in controlling temperature and where non-destructivemeasurements are required. Key words: Leaf thickness, relative water content, water potential  相似文献   

12.
Current methods of microscope stage perfusion do not take full advantage of existing technology for precise fluid control. The concept of flow injection, used extensively by analytical chemists, is described and its application to the fluorescence microscopic study of cultured cells is proposed. Using this technique, cells may be exposed to single or multiple reagent zones of almost any profile, sequence, and duration, with computer-controlled precision. A flow injection system is employed in conjunction with a novel perfusion chamber—the fountain cell. The ability of the flow injection system to perfuse cells with a reagent with a reproducibility of 1% RSD is demonstrated. The system was used to monitor changes in calcium levels in baby hamster kidney cells loaded with FURA-2 as a result of stimulation with a precisely timed concentration of ionomycin. The unique feature of the technique is that it allows a series of responses of a given cell to be directly compared to each other.  相似文献   

13.
Heat shock (HS) reduced total lipid and phospholipid contents and their synthesis in germinating seeds of pigeonpea [Cajanus cajan (L.) Millspaugh]. Lipid peroxidation was also enhanced with increasing temperature and HS duration. HS influenced lipid metabolism to a higher extent at 45°C than at 40°C. This altered lipid metabolism and lipid peroxidation was associated with the loss of various solutes from the germinating seeds, and modification of growth and development. Pretreatment of germinating seeds at 40°C for 1 h or at 45°C for 10 min followed by incubation at 28°C for 3 h prior to 45°C for 2 h ameliorated solute leakage due to reduced lipid peroxidation and improvement in lipid content and membrane function.  相似文献   

14.
15.
16.
《Journal of molecular biology》2019,431(17):3353-3365
The control of ion channel permeation requires the modulation of energetic barriers or “gates” within their pores. However, such barriers are often simply identified from the physical dimensions of the pore. Such approaches have worked well in the past, but there is now evidence that the unusual behavior of water within narrow hydrophobic pores can produce an energetic barrier to permeation without requiring steric occlusion of the pathway. Many different ion channels have now been shown to exploit “hydrophobic gating” to regulate ion flow, and it is clear that new tools are required for more accurate functional annotation of the increasing number of ion channel structures becoming available. We have previously shown how molecular dynamics simulations of water can be used as a proxy to predict hydrophobic gates, and we now present a new and highly versatile computational tool, the Channel Annotation Package (CHAP) that implements this methodology.  相似文献   

17.
18.

Background

Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional) strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.

Methodology/Principal findings

We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses) for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM). Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating FST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.

Conclusions/Significance

We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome of genetic control methods. Skeeter Buster is therefore an important tool to model Ae. aegypti populations and the outcome of vector control measures.  相似文献   

19.
Abstract

Conformational changes in ovalbumin, a globular protein, induced by an anionic surfactant, sodium dodecyl sulfate (SDS), have been monitored by an FT-IR spectrometer using ZnSe cylindrical internal reflection optics which allows high quality IR spectra to be obtained in water solution. The most notable change, on addition of SDS, occurs in the composite band of the Amide I absorption band and the vibrational frequency of the composite C=O bond shifts from 1639 cm?1 to 1652 cm?1. On the other hand, the position of the Amide II band remains fairly unchanged.

Comparison of the various peak positions in the deconvoluted spectra for the native protein and the perturbed protein clearly shows the effect of SDS on the secondary structures of the protein. SDS unfolds the protein. It increases the helix content slightly. More importantly, it alters the β sheet structure, destroying it almost completely in the Amide I region, while retaining it in its neighbourhood. In the deconvoluted spectra of the perturbed protein, a band at 1531 cm?1 indicates generation of some β turns. We used the second derivative of the deconvoluted spectra for fixing positions of minor peaks and shoulders.

The results of this study indicate that the deconvolution of the normal IR spectra, consisting of composite bands, provides evidence for the specific secondary structures in a protein and for the way they are affected by changes in the environment, e.g., the addition of SDS. This makes it possible to relate conformational changes to specific secondary structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号