首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of climate change on the birch pollen season in Denmark   总被引:6,自引:0,他引:6  
Alix Rasmussen 《Aerobiologia》2002,18(3-4):253-265
During the last two decades the climate inDenmark has become warmer and in climatescenarios (IPCC, 2001) it is foreseen that thetemperature will increase in the comingdecades. This predicted future increase intemperature will probably affect both theflowering of plants and the dispersion ofpollen in the air. In this study the alreadyobserved effects on the birch pollen season arestudied.Trend analyses of the birch pollen seasonfor two stations in Denmark more than 200 kmapart give similar results. In Copenhagen thereis a marked shift to an earlier season – itstarts about 14 days earlier in year 2000 thanin 1977, the peak-date is 17 days earlier andthe season-end is 9 days earlier. For Viborgthe trend to an earlier season is in generalthe same, but slightly smaller.During the same period there has also beena distinct rise in the annual-total amount ofbirch pollen, peak-values and days withconcentrations above zero.Rising mean temperatures during winter andspring can explain the calculated trends towardearlier pollen season. Models for estimation ofthe starting date based on Growing Degree Hours(GDH's) give very fine results with acorrelation coefficient around 0.90 and rmserror around 4.2 days.For annual-total there is a significantpositive correlation with the mean temperaturein the growing season the previous year.  相似文献   

2.
Annual totals of daily arboreal pollen concentrations were analysed in Mar del Plata (Argentina) during 1993 and 1994. Flowering patterns were associated with timing and intensity of pollen appearing in the air. Seasonal climatic parameters before the start of flowering and current weather conditions during dispersion were considered.Flowering showed a regular pattern between years and it could be defined by cumulated pollen percentages. Arboreal pollen counts were higher in the first year and is probably due to 1) better climatic conditions connected with pollen productivity and 2) lower precipitation after pollen emission. Betula and Q. ilex showed an opposite behaviour that appears to be caused by a biennial fluctuating rhythm of pollen production.  相似文献   

3.
Present climate of northwestern South America and the southern Isthmus is detailed in terms of major hydro-climatic controls, supported by evidence from station records, reanalysis data and satellite information. In this tropical region, precipitation is the principal hydro-climatological variable to display great variability. The primary objective is to view the controls that operate at intra-seasonal to inter-decadal time scales. This is a topographical complex region whose climate influences range in provenance from the South Atlantic to the Canadian Prairies, and from the North Atlantic to the Eastern Pacific. The situation is further complicated by interactions and feedbacks, in time and space, between these influences, which are interconnected over various scales. The greatest single control on the annual cycle is the meridional migration of the Inter-tropical Convergence Zone and its pattern of associated trade winds. Consideration of these alone and their interaction with the Cordilleras of the Andes and Central America produce a variety of unimodal and bimodal regimes. Regionally, two low level jet streams, the westerly Choco jet (5°N) and the easterly San Andrés jet (12-14°N), and their seasonal variability, have tremendous significance, as do mesoscale convective storms and mid-latitude cold fronts from both the northern (“nortes”) and southern (“friagems”) hemispheres. There are many examples of hydro-climatological feedbacks within the region. Of these the most notable is the interaction between evaporation over the Amazon, precipitation onto the eastern Andes and streamflow from the headwaters of the Amazon. This is further compounded by the high percentages of recycled precipitation over large areas of the tropics and the potential impacts of anthropogenic modification of the land surface. The El Niño-Southern Oscillation phenomenon (ENSO) is the greatest single cause of interannual variability within the region, yet its effects are not universal in their timing, sign or magnitude. A set of regional physical connections to ENSO are established and their varying local manifestations are viewed in the context of the dominant precipitation generating mechanisms and feedbacks at that location. In addition, some potential impacts of longer run variations within the ocean-atmosphere system of the Atlantic are examined independently and in conjunction with ENSO. This review of the climatic controls and feedbacks in the region provides a spatial and temporal framework within which the highly complex set of factors and their interactions may be interpreted from the past.  相似文献   

4.

Background and Aims

Relationships between autumn flowering, precipitation and temperature of plant species of Mediterranean coastal shrublands have been described, but not analysed experimentally. These relationships were analysed for two species of co-occurring, dominant, autumn-flowering shrubs, Globularia alypum and Erica multiflora, over 4 years and in experimentally generated drought and warming conditions. The aim was to improve predictions about the responses and adaptations of flowering of Mediterranean vegetation to climate change.

Methods

Beginning of anthesis and date of maximum flowering intensity (‘peak date’) were monitored over 4 years (2001–2004) on a garrigue land type in the noth-east of the Iberian Peninsula. Two experimental treatments were applied, increased temperature (+0·73°C) and reduced soil moisture (–17%) relative to untreated plots.

Key Results

Flowering of Globularia alypum and Erica multiflora differed greatly between years depending on the precipitation of the previous months and the date of the last substantial rainfall (>10 mm). Globularia alypum flowered once or twice (unimodal or bimodal) as the result of differences in the distribution and magnitude of precipitation in late-spring and summer (when floral buds develop). The drought treatment delayed and decreased flowering of Globularia alypum in 2001 and delayed flowering in 2002. Warming extended the period between the beginning of flowering and the end of the second peak for autumn flowering in 2001 and also increased peak intensity in 2002. Flowering of Erica multiflora was unaffected by either treatment.

Conclusions

Autumn flowering of Globularia alypum and Erica multiflora is more dependent on water availability than on temperature. Considerable inter-annual plasticity in the beginning of anthesis and peak date and on unimodal or bimodal flowering constitutes a ‘safe strategy’ for both species in relation to varying precipitation and temperature. However, severe changes in precipitation in spring and summer may severely affect flowering of Globularia alypum but not Erica multiflora, thus affecting development/structure of the ecosystem if such conditions persist.Key words: Globularia alypum, Erica multiflora, autumn flowering, drought, global warming, Mediterranean  相似文献   

5.
M. Sofiev 《Aerobiologia》2017,33(1):167-179
This discussion paper reveals the contribution of pollen transport conditions to the inter-annual variability of the seasonal pollen index (SPI). This contribution is quantified as a sensitivity of the pollen model predictions to meteorological variability and is shown to be a noticeable addition to the SPI variability caused by plant reproduction cycles. A specially designed SILAM model re-analysis of pollen seasons 1980–2014 was performed, resulting in the 35 years of the SPI predictions over Europe, which was used to compute the SPI inter-annual variability. The current paper presents the results for birch and grass. Throughout the re-analysis, the source term formulations and habitation maps were kept constant, which allowed attributing the obtained variability exclusively to the pollen release and transport conditions during the flowering seasons. It is shown that the effect is substantial: it amounts to 10–20% (grass) and 20–40% (birch) of the observed SPI year-to-year changes reported in the literature. The phenomenon has well-pronounced spatial- and species-specific patterns. The findings were compared with observation-based statistical models for the SPI prediction, showing that such models highlight the same processes as the analysis with the SILAM model.  相似文献   

6.
Due to the public discussion about global and regional warming, the regional climate and the modified climate conditions are analyzed exemplarily for three different regions in the southern Black Forest (southwest Germany). The driving question behind the present study was how can tourism adapt to modified climate conditions and associated changes to the tourism potential in low mountain ranges. The tourism potential is predominately based on the attractiveness of natural resources being climate-sensitive. In this study, regional climate simulations (A1B) are analyzed by using the REMO model. To analyze the climatic tourism potential, the following thermal, physical and aesthetic parameters are considered for the time span 1961–2050: thermal comfort, heat and cold stress, sunshine, humid–warm conditions (sultriness), fog, precipitation, storm, and ski potential (snow cover). Frequency classes of these parameters expressed as a percentage are processed on a monthly scale. The results are presented in form of the Climate-Tourism-Information-Scheme (CTIS). Due to warmer temperatures, winters might shorten while summers might lengthen. The lowland might be more affected by heat and sultriness (e.g., Freiburg due to the effects of urban climate). To adapt to a changing climate and tourism, the awareness of both stakeholders and tourists as well as the adaptive capability are essential.  相似文献   

7.
There has been great interest in the invasion and persistence of algal and insect populations in rivers. Recent modeling approaches assume that the flow speed of the river is constant. In reality, however, flow speeds in rivers change significantly on various temporal scales due to seasonality, weather conditions, or many human activities such as hydroelectric dams. In this paper, we study persistence conditions by deriving the upstream invasion speed in simple reaction-advection-diffusion equations with coefficients chosen to be periodic step functions. The key methodological idea to determine the spreading speed is to use the exponential transform in order to obtain a moment generating function. In a temporally periodic environment, the averages of each coefficient function determine the minimal upstream and downstream propagation speeds for a single-compartment model. For a two-compartment model, the temporal variation can enhance population persistence.  相似文献   

8.
Pollen productivity estimates (PPEs) are indispensable prerequisites for quantitative vegetation reconstructions. Estimates from different European regions show a large variability and it is uncertain whether this reflects regional differences in climate and soil or is brought about by different assessments of vegetation abundance. Forests represent a particular problem as they consist of several layers of vegetation and many tree species only start producing pollen after they have attained ages of several decades. Here we used detailed forest inventory data from north-eastern Germany to investigate the effect of flowering age and understory trees on PPEs. Pollen counts were obtained from 49 small to medium sized lakes chosen to represent the different forest types in the region. Surface samples from lakes within a closed forest of Fagus yielded disproportionate amounts of Fagus pollen, increasing its PPE and the variability of all other estimates. These samples were removed from further analysis but indicate a high trunk-space component that is not considered in the Prentice–Sugita pollen dispersal and deposition model. Results of the restricted dataset show important differences in PPEs based on the consideration of flowering age and understory position. The effect is largest for slow growing and/or late flowering trees like Fagus and Carpinus while it is minimal for species that flower early in their development like Betula and Alnus. The large relevant source area of pollen (RSAP) of 7?km obtained in this study is consistent with the landscape structure of the region.  相似文献   

9.
On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that beta-diversity in the study area is largely driven by species with narrow spatial ranges, due to the interactions between topography, climate and soil formation processes, especially around the wind-exposed and cloud covered ridge area. The findings emphasize the extraordinary conservation value of tropical montane cloud forests in environmentally heterogeneous areas at mid-elevations.  相似文献   

10.
Sanam'ian MF 《Genetika》2003,39(7):947-955
The effect of pollen irradiation at dose rates of 10, 15, 20, and 25 Gy on variability in cotton plants Gossypium hirsutum L. was studied. The modified plants showed a reduced fertility, mainly caused by chromosomal rearragements and genomic mutations during meiosis. The genomic mutations involved primary and tertiary monosomics, monotelodisomics, and a haploid plant. The decrease in meiotic index and pollen fertility in the cotton aneuploids was related not only to aberrations in chromosome pairing but also to genetic features of the original plants. It was found that heterozygosity for interchromosomal exchanges found in M1 plants resulted in the formation of multivalent associations of chromosomes of various forms and types of segregation from translocation complexes. Another result was high variability in pollen fertility. An increase in irradiation dose rate caused an increase in the number of translocants with a high frequency of quadrivalents. The results suggest that the great diversity of forms observed in M1 after pollination with irradiated pollen is determined, first, by elimination of some chromosomes or their arms or the whole paternal genotype and second, by interchromosomal rearrangements. The high variability in pollen fertility of translocants hampers using this trait as a marker of heterozygosity for exchanges in cotton.  相似文献   

11.
The phenological behavior of tropical forests changes in response to seasonal, annual, and long-term variation in temperature, precipitation, and solar irradiance. However, detecting the respective influence of these variables is difficult due to the relatively small range of change that is observed in the tropics. Analysis is further constrained by the limited duration of many phenological datasets. To address these limitations, we developed a predictive ecoinformatic model using multivariate linear regression and slope correlation analysis that can uncover statistically significant biological responses within short, noisy ecological time series. Our approach correlates all possible combinations of climatic and taxonomic variables using a series of random determination trials on shuffled environmental data. Seasonal and annual fluctuations in temperature, precipitation, and sunlight were used to predict the reproductive response of each individual taxon. This predictive model was applied to two seasonally sampled aerial pollen records collected between 1996 and 2006 from two Panamanian forests, Barro Colorado Island and Parque Nacional San Lorenzo. Our results highlight the degree to which pollen output responds to fine-scale variability in climate. Our results lend support to the hypothesis that the pollen output of tropical species is diminished with prolonged periods of heavy rainfall and that pollen output is sensitive to small, seasonal increases in temperature. Our ecoinformatic approach can be expanded to other observational phenological datasets to better understand how communities will respond to climate change and our results demonstrate the ability of aerial pollen data to track long-term changes in flowering phenology.  相似文献   

12.
罗群英  林而达 《生态学报》1999,19(4):557-559
利用中国随机天气模型将中国区域气候模式RCM与作物模式CERES-Rice相连接,模拟了3种气候变率(0%,10%,20%)水平下未来气候(2050年,假定此时CO2浓度为550mg/L)对我国水稻主产区(广州,长沙,南京)灌溉水稻和雨养水稻在考虑CO2肥效与否条件下的产量,模拟结果表明;(1)气候变率对水稻产量的影响因经营方式和研究地区的不同而有差异,对灌溉水稻来说,气候变率对其产量有负面影响,  相似文献   

13.
Annual PAR (pollen accumulation rates; grains cm?2 year?1) were studied with modified Tauber traps situated in ten regions, in Poland (Roztocze), the Czech Republic (two regions in Krkono?e, two in ?umava), Switzerland (4 regions in the Alps), and Georgia (Lagodekhi). The time-series are 10–16 years long, all ending in 2007. We calculated correlations between pollen data and climate. Pollen data are PAR summarized per region (4–7 traps selected per region) for each pollen type (9–14 per region) using log-transformed, detrended medians. Climate data are monthly temperature and precipitation measured at nearby stations, and their averages over all possible 2- to 6-month windows falling within the 20-month window ending with August, just prior to the yearly pollen-trap collection. Most PAR/climate relationships were found to differ both among pollen types and among regions, the latter probably due to differences among the study regions in the habitats of plant populations. Results shared by a number of regions can be summarized as follows. Summer warmth was found to enhance the following year’s PAR of Picea, Pinus non-cembra, Larix and Fagus. Cool summers, in contrast, increase the PAR of Abies, Alnus viridis and Gramineae in the following year, while wet summers promote PAR of Quercus and Gramineae. Wetness and warmth in general were found to enhance PAR of Salix. Precipitation was found to be more important for PAR of Alnus glutinosa-type than temperature. Weather did not have an impact on the PAR of Gramineae, and possibly of Cyperaceae in the same year. Care is advised when extrapolating our results to PAR in pollen sequences, because there are large errors associated with PAR from sediments, due to the effects of taphonomy and sedimentation and high uncertainty in dating. In addition, in pollen sequences that have decadal to centennial rather than near-annual resolution, plant-interaction effects may easily out-weigh the weather signal.  相似文献   

14.
Sanam'ian MF 《Genetika》2003,39(8):1081-1090
The karyotypes of biomorphologically abnormal cotton (Gossypium hirsutum L.) plants obtained in M2 after pollination with pollen irradiated at dose rates 10, 15, 20, and 25 Gy were studied. Various genomic and chromosomal mutations were detected in 57 M2 families. The primary monosomics isolated in M2 were found to be cytologically more stable and more viable, since they had higher meiotic indices, pollen fertility, and seed formation. In M2, a decrease in the number of plants with multiple karyotype aberrations and interchromosomal exchanges with high frequency of multivalent formation was observed. The multivalents had diverse patterns and types of chromosome segregation and translocation complexes. Their pollen fertility was higher than in translocants found in M1. Desynapsis often occurred in M2, including plants with chromosome deficiency or rearrangements. The variation in the number of univalents in various cells was found to result from different expression of synaptic genes. The results indicate stabilization of karyotypes, increase in cytologic stability and viability, and the absence of sterility in aberrant plants.  相似文献   

15.
Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO(2) availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24°C, and present day and next century applied atmospheric pCO(2), respectively. In both species, individual strains were affected in different ways by increased temperature and pCO(2). The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO(2) on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO(2). Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO(2) supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO(2) conditions, with potentially severe consequences for the coastal ecosystem.  相似文献   

16.
Temperature is a major climatic factor that limits geographical distribution of plant species, and the reproductive phase has proven to be one of the most temperature-vulnerable stages. Here, we have used peach to evaluate the effect of temperature on some processes of the progamic phase, from pollination to the arrival of pollen tubes in the ovary. Within the range of temperatures studied, 20 degrees C in the laboratory and, on average, 5.7 degrees C in the field, the results show an accelerating effect of increasing temperature on pollen germination and pollen tube growth kinetics, as well as an increase in the number of pollen tubes that reach the style base. For the last two parameters, although the range of temperature registered in the field was much lower, the results obtained in the laboratory paralleled those obtained in the field. Increasing temperatures drastically reduced stigmatic receptivity. Reduction was sequential, with stigmas first losing the capacity to sustain pollen tube penetration to the transmitting tissue, then their capacity to offer support for pollen germination and, finally, their capacity to support pollen grain adhesion. Within a species-specific range of temperature, this apparent opposite effect of temperature on the male and female side could provide plants with the plasticity to withstand changing environmental effects, ensuring a good level of fertilization.  相似文献   

17.
Reproduction in tunicates is considered to be particularly vulnerable to changes in seawater temperature. In the present study we investigated the effects of sea surface temperature and temperature anomalies on reproductive traits of the non-native sessile tunicate Pyura praeputialis. Reproductive traits of this species were investigated over the course of 67 months, based on samples collected at two localities (eastern and western shorelines) of the Bay of Antofagasta. The study period included years with different oceanic and atmospheric conditions: a warm event, El Niño (June 1997 to July 1998); a cold event, La Niña (August 1998 to December 2000); and post-La Niña (January 2000 to December 2002). We compared two common indices (condition and gonadosomatic) and histological sections to evaluate the maximum reproduction index of this introduced species that dominates a large part of the rocky intertidal habitat in the Bay of Antofagasta. We found sexually mature individuals all year-round and a decrease in both reproductive indices matching the reduction in the sea surface temperature during the austral autumn and winter months. The results suggest that gonad development in this species is sensitive to sea surface temperature and thermal anomalies. We conclude that future thermal anomalies or projected global average sea surface warming associated with climate change might have no negative consequences on these reproductive traits of P. praeputialis. This suggests this species is ecologically resilient and that the ecosystem services that this species provides for other invertebrate and algal species will be maintained.  相似文献   

18.
Continuous measurements of the net CO2 flux exchanged in a mixed forest with the atmosphere were performed over 5 years at the Vielsalm experimental site. The carbon sequestration at the site was deduced by a summation of the measurements. Problems associated with this summation procedure were discussed. The carbon sequestration in the ecosystem was presented and its interannual variability was discussed. An estimation of the night flux correction was given. The correction was applied by replacing measurements made during quiet nights by a parameterization. The impact of the correction was shown to vary between 10 and 20% of the uncorrected flux, according to the year. The need to include the storage flux during turbulent periods was emphasized: its neglect leads to an error which will be greater than the one it tries to correct. It was also shown that the heterogeneity of the site made it necessary to split the data into separate series corresponding to the different vegetation patches and to fill the data gaps by using an algorithm that takes account of the weather conditions. Two series were defined, one corresponding to a beech subplot, the other to a conifer subplot. The uncertainty owing to the data split and the data gap‐filling was about 15–20% annually. The carbon sequestration was then analysed in both the subplots. The length of the growing season was about 210 days in the beech and 240 days in the conifer. The carbon sequestration over 5 years was 2.28 kg C m2?2 in the beech and 3.58 kg C m2?2 in the conifer. The main difference between the species appeared in spring, between March and May, when the beeches were leafless. Significant interannual variations were observed in both the subplots. They appeared mainly in summer and were primarily because of the variations in the radiation and air humidity regimes. In addition, an impact of the interannual variation of the vegetation area index (VAI) and of the leaf initiation date was observed in the beech. Finally, a decline of the carbon sequestration efficiency of the ecosystem during the season was observed in both the subplots. It was because of neither the variation in any climatic variables nor VAI variation.  相似文献   

19.
Deforestation changes the hydrological, geomorphological, and biochemical states of streams by decreasing evapotranspiration on the land surface and increasing runoff, river discharge, erosion and sediment fluxes from the land surface. Deforestation has removed about 55% of the native vegetation and significantly altered the hydrological and morphological characteristics of an 82,632 km2 watershed of the Araguaia River in east-central Brazil. Observed discharge increased by 25% from the 1970s to the 1990s and computer simulations suggest that about 2/3 of the increase is from deforestation, the remaining 1/3 from climate variability. Changes of this scale are likely occurring throughout the 2,000,000 km2 savannah region of central Brazil.  相似文献   

20.
The inhibitory effect of gibberellic acid on flowering in Citrus   总被引:3,自引:1,他引:2  
The application of gibberellic acid (GA3) at any time from early November until bud sprouting, resulted in a significant inhibition of flowering in the sweet orange [ C. sinensis (L.) Osbeck] and the Satsuma ( C. unshiu Marc.) and Clementine ( C. reticulata Blanco) mandarins. Two response peaks were evident: the first occurred when the application was timed to the translocation of an unknown flowering signal from the leaves to the buds. The second occurred during bud sprouting, at the time the flower primordia were differentiating. From the pattern of flowering, it appears that the mechanism of inhibition was similar irrespective of the timing of GA3 application. There was an initial reduction in bud sprouting affecting selectively those buds originating leafless inflorescences. An additional inhibition resulted in a reduction in the number of leafy inflorescences with an increase in the number of vegetative shoots, suggesting the reversion of a floral to a vegetative apex. The inhibited buds sprouted readily in vitro but invariably vegetative shoots were formed. A continuous influence of the sustaining branch is necessary to keep the flowering commitment of the buds; irreversible commitment occurs when the petal primordia are well differentiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号