首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polo-like kinases (Plks) control multiple important events during M phase progression, but little is known about their activation during the cell cycle. The activities of both mammalian Plk1 and Xenopus Plx1 peak during M phase, and this activation has been attributed to phosphorylation. However, no phosphorylation sites have previously been identified in any member of the Plk family. Here we have combined tryptic phosphopeptide mapping with mass spectrometry to identify four major phosphorylation sites in Xenopus Plx1. All four sites appear to be phosphorylated in a cell cycle-dependent manner. Phosphorylations at two sites (Ser-260 and Ser-326) most likely represent autophosphorylation events, whereas two other sites (Thr-201 and Ser-340) are targeted by upstream kinases. Several recombinant kinases were tested for their ability to phosphorylate Plx1 in vitro. Whereas xPlkk1 phosphorylated primarily Thr-10, Thr-201 was readily phosphorylated by protein kinase A, and Cdk1/cyclin B was identified as a likely kinase acting on Ser-340. Phosphorylation of Ser-340 was shown to be responsible for the retarded electrophoretic mobility of Plx1 during M phase, and phosphorylation of Thr-201 was identified as a major activating event.  相似文献   

2.
The mammalian polo-like kinase (Plk) plays a critical role in M-phase progression. Plk is phosphorylated and activated by an upstream kinase(s), which has not yet been identified in mammalian cells. Phosphopeptide mapping and phosphoamino acid analyses of Plk labeled in vivo and phosphorylated in vitro by Xenopus polo-like kinase kinase-1 (xPlkk1) or by lymphocyte-oriented kinase, its most closely related mammalian enzyme, indicate that Thr-210 is a major phosphorylation site in activated Plk from mitotic HeLa cells. Although the amino acid sequence surrounding Ser-137 is similar to that at Thr-210 and is conserved in Plk family members, Ser-137 is not detectably phosphorylated in mitotic mammalian cells or by xPlkk1 in vitro. Nevertheless, the substitution of either Thr-210 or Ser-137 with Asp (T210D or S137D) elevates the kinase activity of Plk. The kinase activity of the double mutant S137D/T210D is not significantly different from that of T210D or S137D, demonstrating that substitution of both residues does not have an additive effect on Plk activity. Expression of the S137D mutant construct arrested HeLa cells in early S-phase with slightly separated centrosomes, whereas cells expressing wild type and T210D were arrested or delayed in M-phase. These data indicate that the Ser-137 may have an unexpected and novel role in the function of Plk.  相似文献   

3.
In the Xenopus oocyte system mitogen treatment triggers the G(2)/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21(Cip1) had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.  相似文献   

4.
During mitosis the Xenopus polo-like kinase 1 (Plx1) plays key roles in the activation of Cdc25C, in spindle assembly, and in cyclin B degradation. Previous work has shown that the activation of Plx1 requires phosphorylation on serine and threonine residues. In the present work, we demonstrate that replacement of Ser-128 or Thr-201 with a negatively charged aspartic acid residue (S128D or T201D) elevates Plx1 activity severalfold and that replacement of both Ser-128 and Thr-201 with Asp residues (S128D/T201D) increases Plx1 activity approximately 40-fold. Microinjection of mRNA encoding S128D/T201D Plx1 into Xenopus oocytes induced directly the activation of both Cdc25C and cyclin B-Cdc2. In egg extracts T201D Plx1 delayed the timing of deactivation of Cdc25C during exit from M phase and accelerated Cdc25C activation during entry into M phase. This supports the concept that Plx1 is a "trigger" kinase for the activation of Cdc25C during the G(2)/M transition. In addition, during anaphase T201D Plx1 reduced preferentially the degradation of cyclin B2 and delayed the reduction in Cdc2 histone H1 kinase activity. In early embryos S128D/T201D Plx1 resulted in arrest of cleavage and formation of multiple interphase nuclei. Consistent with these results, Plx1 was found to be localized on centrosomes at prophase, on spindles at metaphase, and at the midbody during cytokinesis. These results demonstrate that in Xenopus laevis activation of Plx1 is sufficient for the activation of Cdc25C at the initiation of mitosis and that inactivation of Plx1 is required for complete degradation of cyclin B2 after anaphase and completion of cytokinesis.  相似文献   

5.
Checkpoint recovery upon completion of DNA repair allows the cell to return to normal cell cycle progression and is thus a crucial process that determines cell fate after DNA damage. We previously studied this process in Xenopus egg extracts and established Greatwall (Gwl) as an important regulator. Here we show that preactivated Gwl kinase can promote checkpoint recovery independently of cyclin-dependent kinase 1 (Cdk1) or Plx1 (Xenopus polo-like kinase 1), whereas depletion of Gwl from extracts exhibits no synergy with that of Plx1 in delaying checkpoint recovery, suggesting a distinct but related relationship between Gwl and Plx1. In further revealing their functional relationship, we found mutual dependence for activation of Gwl and Plx1 during checkpoint recovery, as well as their direct association. We characterized the protein association in detail and recapitulated it in vitro with purified proteins, which suggests direct interaction. Interestingly, Gwl interaction with Plx1 and its phosphorylation by Plx1 both increase at the stage of checkpoint recovery. More importantly, Plx1-mediated phosphorylation renders Gwl more efficient in promoting checkpoint recovery, suggesting a functional involvement of such regulation in the recovery process. Finally, we report an indirect regulatory mechanism involving Aurora A that may account for Gwl-dependent regulation of Plx1 during checkpoint recovery. Our results thus reveal novel mechanisms underlying the involvement of Gwl in checkpoint recovery, in particular, its functional relationship with Plx1, a well characterized regulator of checkpoint recovery. Coordinated interplays between Plx1 and Gwl are required for reactivation of these kinases from the G(2)/M DNA damage checkpoint and efficient checkpoint recovery.  相似文献   

6.
Polo-like kinases comprise a family of evolutionarily conserved serine/threonine protein kinases that play multiple roles in cell cycle regulation. In addition to the N-terminal catalytic domain, polo-like kinases have one or two highly conserved C-terminal non-catalytic regions, termed polo boxes. These motifs are required for targeting these kinases to subcellular mitotic structures. Here we report that kinase-dead Xenopus polo-like kinase (Plx1NA) functions as a competitor of endogenous Plx1 for polo box binding site(s) and inhibits the activation of Cdc25C and the G(2)-M transition in vivo. However, kinase-dead Plx1 with a point mutation in the polo box region (Plx1NAWF) did not have inhibitory effects. The ability of Plx1NA to block activation of the anaphase-promoting complex/cyclosome also requires an intact polo box. Microinjection of Plx1NA but not Plx1NAWF mRNA into Xenopus embryos caused cleavage arrest and formation of monopolar spindles, an effect previously seen in embryos injected with anti-Plx1 antibody. Spindle assembly experiments in vitro also showed that only monopolar spindles formed in Xenopus egg extracts supplemented with recombinant Plx1NA and that the spindle assembly process was delayed. Taken together, these results indicate that the polo box is required for Plx1 function in both the G(2)-M and the metaphase/anaphase transitions during the cell cycle.  相似文献   

7.
Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAPK), the Xenopus ortholog of ERK2, is a major Cdc25 phosphorylating kinase in extracts of M phase-arrested Xenopus eggs. In Xenopus oocytes, p42 MAPK interacts with hypophosphorylated Cdc25 before meiotic induction. During meiotic induction, p42 MAPK phosphorylates Cdc25 at T48, T138, and S205, increasing Cdc25's phosphatase activity. In a mammalian cell line, ERK1/2 interacts with Cdc25C in interphase and phosphorylates Cdc25C at T48 in mitosis. Inhibition of ERK activation partially inhibits T48 phosphorylation, Cdc25C activation, and mitotic induction. These findings demonstrate that ERK-MAP kinases are directly involved in activating Cdc25 during the G(2)/M transition.  相似文献   

8.
Liu J  Maller JL 《Current biology : CB》2005,15(16):1458-1468
BACKGROUND: Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. RESULTS: Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. CONCLUSIONS: Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.  相似文献   

9.
Wind M  Kelm O  Nigg EA  Lehmann WD 《Proteomics》2002,2(11):1516-1523
A novel strategy for the determination of protein phosphorylation sites is described and applied to the polo-like kinases Plx1 (Xenopus laevis) and Plk1 (Homo sapiens). The strategy comprises the sequential application of the following techniques: proteolytic digestion, capillary liquid chromatography (LC)-inductively coupled plasma mass spectrometry with phosphorus detection, capillary LC-electrospray mass spectrometry and electrospray tandem mass spectrometry. In this approach, phosphopeptides are generated, their elution time in capillary LC is determined, candidate phosphopeptides at the corresponding elution times are identified, and positive identification and sequencing of phosphopeptides is performed in the last step of the analysis. Using this technique, Ser25/26, Ser326, and Ser340 were identified as phosphorylation sites in recombinant Plx1, and Ser340 was identified as the major phosphorylation site in a kinase-dead mutant of Plx1 expressed in okadaic acid-treated Sf9 insect cells. A site corresponding to Ser326 in Plx1 was also shown to be phosphorylated in the human polo-like kinase Plk1 (Ser335). Element mass spectrometry with phosphorus detection provides a quantitative phosphorylation profile of all phosphorylation sites accessible by LC.  相似文献   

10.
Regulation of Op18 during spindle assembly in Xenopus egg extracts   总被引:5,自引:0,他引:5  
Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18.  相似文献   

11.
Accurate chromosome segregation is controlled by the spindle checkpoint, which senses kinetochore– microtubule attachments and tension across sister kinetochores. An important step in the tension-signaling pathway involves the phosphorylation of an unknown protein by polo-like kinase 1/Xenopus laevis polo-like kinase 1 (Plx1) on kinetochores lacking tension to generate the 3F3/2 phosphoepitope. We report here that the checkpoint protein BubR1 interacts with Plx1 and that phosphorylation of BubR1 by Plx1 generates the 3F3/2 epitope. Formation of the BubR1 3F3/2 epitope by Plx1 requires a prior phosphorylation of BubR1 on Thr 605 by cyclin-dependant kinase 1 (Cdk1). This priming phosphorylation of BubR1 by Cdk1 is required for checkpoint-mediated mitotic arrest and for recruitment of Plx1 and the checkpoint protein Mad2 to unattached kinetochores. Biochemically, formation of the 3F3/2 phosphoepitope by Cdk1 and Plx1 greatly enhances the kinase activity of BubR1. Thus, Cdk1-mediated phosphorylation of BubR1 controls checkpoint arrest and promotes the formation of the kinetochore 3F3/2 epitope.  相似文献   

12.
Inoue D  Sagata N 《The EMBO journal》2005,24(5):1057-1067
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.  相似文献   

13.
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates the mitotic G2/M transition in cycling egg extracts and induces meiotic maturation in G2-arrested Xenopus oocytes in the absence of progesterone. Activated Greatwall can induce phosphorylations of Cdc25 in the absence of the activity of Cdc2, Plx1 (Xenopus Polo-like kinase) or mitogen-activated protein kinase, or in the presence of an activator of protein kinase A that normally blocks mitotic entry. The effects of active Greatwall mimic in many respects those associated with addition of the phosphatase inhibitor okadaic acid (OA); moreover, OA allows cycling extracts to enter M phase in the absence of Greatwall. Taken together, these findings support a model in which Greatwall negatively regulates a crucial phosphatase that inhibits Cdc25 activation and M phase induction.  相似文献   

14.
Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF.   总被引:53,自引:15,他引:38       下载免费PDF全文
MAP kinase is activated and phosphorylated during M phase of the Xenopus oocyte cell cycle, and induces the interphase-M phase transition of microtubule dynamics in vitro. We have carried out molecular cloning of Xenopus M phase MAP kinase and report its entire amino acid sequence. There is no marked change in the MAP kinase mRNA level during the cell cycle. Moreover, studies with an anti-MAP kinase antiserum indicate that MAP kinase activity may be regulated posttranslationally, most likely by phosphorylation. We show that MAP kinase can be activated by microinjection of MPF into immature oocytes or by adding MPF to cell-free extracts of interphase eggs. These results suggest that MAP kinase functions as an intermediate between MPF and the interphase-M phase transition of microtubule organization.  相似文献   

15.
The protein kinase p90(Rsk) has previously been implicated as a key target of the MAPK pathway during M phase of meiosis II in Xenopus oocytes. To determine whether Rsk is a mediator of MAPK for stimulation of the G(2)/M transition early in meiosis I, we sought to generate a form of Rsk that would be constitutively active in resting, G(2) phase oocytes. Initial studies revealed that an N-terminal truncation of 43 amino acids conferred enhanced specific activity on the enzyme in G(2) phase, and stability was highest if the C terminus was not truncated. The full-length enzyme is known to be activated by phosphorylation at five sites. Two of these sites and flanking residues were replaced with either aspartic or glutamic acid, and Tyr(699) was mutated to alanine. The resulting construct, termed fully activated (FA) Rsk, had constitutive activity in G(2) phase, with a specific activity equivalent to that of wild type Rsk in M phase. In eight independent experiments approximately 45% of oocytes expressing FA-Rsk underwent germinal vesicle breakdown (GVBD, the G(2)/M transition) in the absence of progesterone, and this effect could be observed even in the presence of the MAPK kinase inhibitor U0126. Moreover, the specific activity of FA-Rsk in vivo was unaffected by U0126. In oocytes that did not undergo GVBD with FA-Rsk expression, subsequent treatment with progesterone resulted in a very rapid rate of GVBD even in the presence of U0126 to inhibit the endogenous MAPK/Rsk pathway. These results indicate that Rsk is the mediator of MAPK effects for the G(2)/M transition in meiosis I and in a subpopulation of oocytes Rsk is sufficient to trigger the G(2)/M transition.  相似文献   

16.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

17.
Polo-like kinases (Plks), named after the Drosophila gene product polo, have been implicated in the regulation of multiple aspects of mitotic progression, including the activation of the Cdc25 phosphatase, bipolar spindle formation and cytokinesis. Genetic analyses performed in yeast and Drosophila suggest a function for Plks at late stages of mitosis, but biochemical data to support such a function in vertebrate organisms are lacking. Here we have taken advantage of Xenopus egg extracts for exploring the function of Plx1, a Xenopus Plk, during the cell cycle transition from M phase to interphase (I phase). We found that the addition of a catalytically inactive Plx1 mutant to M phase-arrested egg extracts blocked their Ca2+-induced release into interphase. Concomitantly, the proteolytic destruction of several targets of the anaphase-promoting complex and the inactivation of the Cdc2 protein kinase (Cdk1) were prevented. Moreover, the M to I phase transition could be abolished by immunodepletion of Plx1, but was restored upon the addition of recombinant Plx1. These results demonstrate that the exit of egg extracts from M phase arrest requires active Plx1, and they strongly suggest an important role for Plx1 in the activation of the proteolytic machinery that controls the exit from mitosis.  相似文献   

18.
W G Dunphy  J W Newport 《Cell》1989,58(1):181-191
It has been demonstrated that the Xenopus homolog of the fission yeast cdc2 protein is a component of M phase promoting factor (MPF). We show that the Xenopus cdc2 protein is phosphorylated on tyrosine in vivo, and that this tyrosine phosphorylation varies markedly with the stage of the cell cycle. Tyrosine phosphorylation is high during interphase (in Xenopus oocytes and activated eggs) but absent during M phase (in unfertilized eggs). In vitro activation of pre-MPF from Xenopus oocytes results in tyrosine dephosphorylation of the cdc2 protein and switching-on of its kinase activity. The product of the fission yeast suc1 gene (p13), which inhibits the entry into mitosis in Xenopus extracts, completely blocks tyrosine dephosphorylation and kinase activation. However, p13 has no effect on the activated form of the cdc2 kinase. These findings suggest that p13 controls the activation of the cdc2 kinase, and that tyrosine dephosphorylation is an important step in this process.  相似文献   

19.
The checkpoint mediator protein Claspin is essential for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing aphidicolin-induced DNA replication blocks. We show that, during this checkpoint response, Claspin becomes phosphorylated on threonine 906 (T906), which creates a docking site for Plx1, the Xenopus Polo-like kinase. This interaction promotes the phosphorylation of Claspin on a nearby serine (S934) by Plx1. After a prolonged interphase arrest, aphidicolin-treated egg extracts typically undergo adaptation and enter into mitosis despite the presence of incompletely replicated DNA. In this process, Claspin dissociates from chromatin, and Chk1 undergoes inactivation. By contrast, aphidicolin-treated extracts containing mutants of Claspin with alanine substitutions at positions 906 or 934 (T906A or S934A) are unable to undergo adaptation. Under such adaptation-defective conditions, Claspin accumulates on chromatin at high levels, and Chk1 does not decrease in activity. These results indicate that the Plx1-dependent inactivation of Claspin results in termination of a DNA replication checkpoint response.  相似文献   

20.
The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号