首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
The metabolism of phenanthrene by the fungus Cunninghamella elegans was investigated. Kinetic experiments using [9-14C]phenanthrene showed that after 72 h, 53% of the total radioactivity was associated with a glucoside conjugate of 1-hydroxyphenanthrene (phenanthrene 1-O-beta-glucose). This metabolite was isolated by reversed-phase high-performance liquid chromatography and characterized by the application of UV absorption, 1H nuclear magnetic resonance, and mass spectral techniques. The results show that aromatic ring oxidation followed by glucosylation is a predominant pathway in the metabolism of the polycyclic aromatic hydrocarbon phenanthrene by C. elegans.  相似文献   

2.
The fungus Cunninghamella elegans oxidized anthracene and phenanthrene to form predominately trans-dihydrodiols. The metabolites were isolated by reversed-phase high-pressure liquid chromatography for structural and conformational analyses. Comparison of the circular dichroism spectrum of the fungal trans-1,2-dihydroxy-1,2-dihydroanthracene to that formed by rat liver microsomes indicated that the major enantiomer of the trans-1,2-dihydroxy-1,2-dihydroanthracene formed by C. elegans had an S,S absolute stereochemistry, which is opposite to the predominately 1R,2R dihydrodiol formed by rat liver microsomes. C. elegans oxidized phenanthrene primarily in the 1,2-positions to form trans-1,2-dihydroxy-1,2-dihydrophenanthrene. In addition, a minor amount of trans-3,4-dihydroxy-3,4-dihydrophenanthrene was detected. Metabolism at the K-region (9,10-positions) of phenanthrene was not detected. Comparison of the circular dichroism spectra of the phenanthrene trans-1,2- and trans-3,4-dihydrodiols formed by C. elegans to those formed by mammalian enzymes indicated that each of the dihydrodiols formed by C. elegans had an S,S absolute configuration. The results indicate that there are differences in both the regio- and stereoselective metabolism of anthracene and phenanthrene between the fungus C. elegans and rat liver microsomes.  相似文献   

3.
A filamentous fungus Cunninghamella elegans IM 1785/21Gp which displays ability of 17alpha,21-dihydroxy-4-pregnene-3,20-dione (cortexolone) 11-hydroxylation (yielding epihydrocortisone (eF) and hydrocortisone (F)) and polycyclic aromatic hydrocarbons (PAHs) degradation, was used as a microbial eucaryotic model to study the relationships between mammalian steroid hydroxylation and PAHs metabolization. The obtained results showed faster transformation of phenanthrene in Sabouraud medium supplemented with steroid substrate (cortexolone). Simultaneously phenanthrene stimulated epihydrocortisone production from cortexolone. In phenanthrene presence the ratio between cortexolone hydroxylation products (hydrocortisone and epihydrocortisone) was changed from 1:5.1-6.2 to 1:7.6-8.4 in the culture without phenanthrene. Cytochrome P-450 content significantly increased after the culture supplementation by the second substrate, phenanthrene or cortexolone, adequately. To confirm the involvement of cytochrome P-450 in phenanthrene metabolism, the inhibition studies were performed. The cytochrome P-450 inhibitors SKF 525-A (1.5mM) and 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) (2mM) inhibited phenanthrene transformation by 80 and 62%, respectively. 1-aminobenzotriazole (1mM) completely blocked phenanthrene metabolism. The obtained results suggest a presence of connections between steroid hydroxylases and enzymes involved in PAH degradation in C. elegans.  相似文献   

4.
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of environmental contaminants. The compound phenanthrene is a model PAH. A novel fluorometric method for measuring phenanthrene metabolism in vitro was developed and verified with direct measurement of [14C]phenanthrene using dog liver microsomes. The fluorometric assay and direct measurement of [14C]phenanthrene metabolism were used to show that CYP6D1, a house fly cytochrome P450, is the major house fly P450 involved in phenanthrene metabolism. Phenanthrene was metabolized by microsomes from the LPR strain of house fly that overexpresses CYP6D1, but metabolism was not observed in the CS strain that has a lower level of CYP6D1. Furthermore, the majority of phenanthrene metabolism was inhibited by a CYP6D1-specific antibody. This study increases the number of known substrates of CYP6D1 and identifies polyaromatic hydrocarbons as potential substrates of CYP6D1. The utility of CYP6D1 as an agent in bioremediation and the utility of the new fluorometric assay for understanding PAH metabolism in insects and mammals are discussed.  相似文献   

5.
The mechanism of uptake of phenanthrene by Mycobacterium sp. strain RJGII-135, a polycyclic hydrocarbon-degrading bacterium, was examined with cultures grown on phenanthrene (induced for phenanthrene metabolism) and acetate (uninduced). Washed cells were suspended in aqueous solutions of [9-14C]phenanthrene, and then the cells were collected by filtration. Low-level steady-state 14C concentrations in uninduced cells were achieved within the first 15 s of incubation. This immediate uptake did not show saturation kinetics and was not susceptible to inhibitors of active transport, cyanide and carbonyl cyanide m-chlorophenylhydrazone. These results indicated that phenanthrene enters rapidly into the cells by passive diffusion. However, induced cells showed cumulative uptake over several minutes. The initial uptake rates followed saturation kinetics, with an apparent affinity constant (Kt) of 26 ± 3 nM (mean ± standard deviation). Uptake of phenanthrene by induced cells was strongly inhibited by the inhibitors. Analysis of cell-associated 14C-labeled compounds revealed that the concurrent metabolism during uptake was rapid and was not saturated at the substrate concentrations tested, suggesting that the saturable uptake observed reflects membrane transport rather than intracellular metabolism. These results were consistent with the presence of a saturable, energy-dependent mechanism for transport of phenanthrene in induced cells. Moreover, the kinetic data for the cumulative uptake suggested that phenanthrene is specifically bound by induced cells, based on its saturation with an apparent dissociation constant (Kd) of 41 ± 21 nM (mean ± standard deviation). Given the low values of Kt and Kd, Mycobacterium sp. strain RJGII-135 may use a high-affinity transport system(s) to take up phenanthrene from the aqueous phase.  相似文献   

6.
The trans-dihydrodiols produced during the metabolism of phenanthrene by Cunninghamella elegans, Syncephalastrum racemosum, and Phanerochaete chrysosporium were purified by high-performance liquid chromatography (HPLC). The enantiomeric compositions and optical purities of the trans-dihydrodiols were determined to compare interspecific differences in the regio- and stereoselectivity of the fungal enzymes. Circular dichroism spectra of the trans-dihydrodiols were obtained, and the enantiomeric composition of each preparation was analyzed by HPLC with a chiral stationary-phase column. The phenanthrene trans-1,2-dihydrodiol produced by C. elegans was a mixture of the 1R,2R and 1S,2S enantiomers in variable proportions. The phenanthrene trans-3,4-dihydrodiol produced by P. chrysosporium was the optically pure 3R,4R enantiomer, but that produced by S. racemosum was a 68:32 mixture of the 3R,4R and 3S,4S enantiomers. The phenanthrene trans-9,10-dihydrodiol produced by P. chrysosporium was predominantly the 9S,10S enantiomer, but those produced by C. elegans and S. racemosum were predominantly the 9R,10R enantiomer. The results indicate that although different fungi may exhibit similar regioselectivity, there still may be differences in stereoselectivity that depend on the species and the cultural conditions.  相似文献   

7.
The mechanism of uptake of phenanthrene by Mycobacterium sp. strain RJGII-135, a polycyclic hydrocarbon-degrading bacterium, was examined with cultures grown on phenanthrene (induced for phenanthrene metabolism) and acetate (uninduced). Washed cells were suspended in aqueous solutions of [9-(14)C]phenanthrene, and then the cells were collected by filtration. Low-level steady-state (14)C concentrations in uninduced cells were achieved within the first 15 s of incubation. This immediate uptake did not show saturation kinetics and was not susceptible to inhibitors of active transport, cyanide and carbonyl cyanide m-chlorophenylhydrazone. These results indicated that phenanthrene enters rapidly into the cells by passive diffusion. However, induced cells showed cumulative uptake over several minutes. The initial uptake rates followed saturation kinetics, with an apparent affinity constant (K(t)) of 26 +/- 3 nM (mean +/- standard deviation). Uptake of phenanthrene by induced cells was strongly inhibited by the inhibitors. Analysis of cell-associated (14)C-labeled compounds revealed that the concurrent metabolism during uptake was rapid and was not saturated at the substrate concentrations tested, suggesting that the saturable uptake observed reflects membrane transport rather than intracellular metabolism. These results were consistent with the presence of a saturable, energy-dependent mechanism for transport of phenanthrene in induced cells. Moreover, the kinetic data for the cumulative uptake suggested that phenanthrene is specifically bound by induced cells, based on its saturation with an apparent dissociation constant (K(d)) of 41 +/- 21 nM (mean +/- standard deviation). Given the low values of K(t) and K(d), Mycobacterium sp. strain RJGII-135 may use a high-affinity transport system(s) to take up phenanthrene from the aqueous phase.  相似文献   

8.
Metabolism of naphthalene by Cunninghamella elegans.   总被引:11,自引:7,他引:4       下载免费PDF全文
Cunninghamella elegans grown on Sabouraud dextrose broth in the presence of naphthalene produced six metabolites. Each product was isolated and identified by conventional chemical techniques. The major metabolites were 1-naphthol (67.9%) and 4-hydroxy-1-tetralone (16.7%). Minor products isolated were 1,4-naphthoquinone (2.8%), 1,2-naphthoquinone (0.2%), 2-naphthol (6.3%), and trans-1,2-dihydroxy-1,2-dihydronaphthalene (5.3%). C. elegans oxidized both 1-naphthol and 1,4-naphthoquinone to 4-hydroxy-1-tetralone. The results suggest that C. elegans oxidizes naphthalene by a sequence of reactions similar to those reported for the mammalian metabolism of this hydrocarbon.  相似文献   

9.
The metabolism of 1-fluoronaphthalene by Cunninghamella elegans ATCC 36112 was studied. The metabolites were isolated by reverse-phase high-pressure liquid chromatography and characterized by the application of UV absorption, 1H nuclear magnetic resonance, and mass spectral techniques. C. elegans oxidized 1-fluoronaphthalene predominantly at the 3,4- and 5,6-positions to form trans-3,4-dihydroxy-3,4-dihydro-1-fluoronaphthalene and trans-5,6-dihydroxy-5,6-dihydro-1-fluoronaphthalene. In addition, 1-fluoro-8-hydroxy-5-tetralone, 5-hydroxy-1-fluoronaphthalene, and 4-hydroxy-1-fluoronaphthalene as well as glucoside, sulfate, and glucuronic acid conjugates of these phenols were formed. Circular dichroism spectra of the trans-3,4- and trans-5,6-dihydrodiols formed from 1-fluoronaphthalene indicated that the major enantiomers of the dihydrodiols have S,S absolute stereochemistries. In contrast, the trans-5,6-dihydrodiol formed from 1-fluoronaphthalene from 3-methylcholanthrene-treated rats had Cotton effects that are opposite in sign (R,R) to those formed by C. elegans. The results indicate that the fungal monooxygenase-epoxide hydrolase systems are highly stereoselective in the metabolism of 1-fluoronaphthalene and that a fluoro substituent blocks epoxidation at the fluoro-substituted double bond, decreases oxidation at the aromatic double bond that is peri to the fluoro substituent, and enhances metabolism at the 3,4- and 5,6-positions of 1-fluoronaphthalene.  相似文献   

10.
Coenzyme Q(n) is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q(8) have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete'E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q(10) is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity.  相似文献   

11.
Fungal metabolism of tert-butylphenyl diphenyl phosphate.   总被引:1,自引:1,他引:0       下载免费PDF全文
The fungal metabolism of tert-butylphenyl diphenyl phosphate (BPDP) was studied. Cunninghamella elegans was incubated with BPDP for 7 days, and the metabolites formed were separated by thin-layer, gas-liquid, or high-pressure liquid chromatography and identified by 1H nuclear magnetic resonance and mass spectral techniques. C. elegans metabolized BPDP predominantly at the tert-butyl moiety to form the carboxylic acid 4-(2-carboxy-2-propyl)triphenyl phosphate. In addition, 4-hydroxy-4'-(2-carboxy-2-propyl)triphenyl phosphate, triphenyl phosphate, diphenyl phosphate, 4-(2-carboxy-2-propyl)diphenyl phosphate, 2-(4-hydroxyphenyl)-2-methyl propionic acid, and phenol were detected. Similar metabolites were found in the 28 fungal cultures which were examined for their ability to metabolize BPDP. Experiments with [14C]BPDP indicated that C. elegans metabolized 70% of the BPDP after 7 days and that the ratio of organic-soluble metabolites to water-soluble metabolites was 8:2. The results indicate that fungi preferentially oxidize BPDP at the alkyl side chain and at the aromatic rings to form hydroxylated derivatives. The trace levels of mono- and diaryl metabolites and the low level of phosphotriesterase activity measured in C. elegans indicate that phosphatase cleavage is a minor pathway for fungal metabolism of BPDP.  相似文献   

12.
The fungal metabolism of tert-butylphenyl diphenyl phosphate (BPDP) was studied. Cunninghamella elegans was incubated with BPDP for 7 days, and the metabolites formed were separated by thin-layer, gas-liquid, or high-pressure liquid chromatography and identified by 1H nuclear magnetic resonance and mass spectral techniques. C. elegans metabolized BPDP predominantly at the tert-butyl moiety to form the carboxylic acid 4-(2-carboxy-2-propyl)triphenyl phosphate. In addition, 4-hydroxy-4'-(2-carboxy-2-propyl)triphenyl phosphate, triphenyl phosphate, diphenyl phosphate, 4-(2-carboxy-2-propyl)diphenyl phosphate, 2-(4-hydroxyphenyl)-2-methyl propionic acid, and phenol were detected. Similar metabolites were found in the 28 fungal cultures which were examined for their ability to metabolize BPDP. Experiments with [14C]BPDP indicated that C. elegans metabolized 70% of the BPDP after 7 days and that the ratio of organic-soluble metabolites to water-soluble metabolites was 8:2. The results indicate that fungi preferentially oxidize BPDP at the alkyl side chain and at the aromatic rings to form hydroxylated derivatives. The trace levels of mono- and diaryl metabolites and the low level of phosphotriesterase activity measured in C. elegans indicate that phosphatase cleavage is a minor pathway for fungal metabolism of BPDP.  相似文献   

13.
Microbial metabolism of pyrene   总被引:6,自引:0,他引:6  
The isolation and identification of pyrene metabolites formed from pyrene by the fungus Cunninghamella elegans is described. C. elegans was incubated with pyrene for 24 h. Six metabolites were isolated by reversed-phase high-performance liquid (HPLC) and thin-layer chromatography (TLC) and characterized by the application of UV absorption, 1H-NMR and mass spectral techniques. C. elegans hydroxylated pyrene predominantly at the 1,6- and 1,8-positions with subsequent glucosylation to form glucoside conjugates of 1-hydroxypyrene, 1,6- and 1,8-dihydroxypyrene. In addition, 1,6- and 1,8-pyrenequinones and 1-hydroxypyrene were identified as metabolites. Experiments with [4-14C]pyrene indicated that over a 24-h period, 41% of pyrene was metabolized to ethyl acetate-soluble metabolites. The glucoside conjugates of 1-hydroxypyrene, 1,6- and 1,8-dihydroxypyrene accounted for 26%, 7% and 14% of the pyrene metabolized, respectively. Pyrenequinones accounted for 22%. The results indicate that the fungus C. elegans metabolized pyrene to non-toxic metabolites (glucoside conjugates) as well as to compounds (pyrenequinones) which have been suggested to be biologically active in higher organisms. In addition, there was no metabolism at the K-region of the molecule which is a major site of enzymatic attack in mammalian systems.  相似文献   

14.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

15.
16.
It is well known that aging and longevity strongly correlate with energy metabolism. The nematode Caenorhabditis elegans is widely used as an ultimate model of experimental animals. Thus, we developed a novel tool, which is constructed from an optical detector, using an indirect method that can measure simply the energy metabolism of C. elegans. If we measure the oxygen consumption rate using this optical tool, we can easily evaluate the activity of mitochondria as an index in the aging process. However, a direct measurement of the oxygen consumption rate of C. elegans exposed in air is thought to be impossible because of the high concentration of atmospheric oxygen and the small size of the animals. We demonstrate here that we can directly detect the oxygen consumption with a small number of animals (相似文献   

17.
Aminopeptidase activities were detected in extracts of the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus using the aminoacyl substrate L-alanine-4-nitroanilide. The activities exhibited similarities in Km (C. elegans = 2.22 mM; P. redivivus = 2.09 mM) and specific activity (C. elegans = 1.38 +/- 0.43 mAU min(-1) x g(-1); P. redivivus, 1.23 +/- 0.18m AU min(-1) microg(-1). Each is inhibited competitively by amastatin (C. elegans IC50 = 0.46 microM; P. redivivus IC50 = 15.90 microM) and non-competitively by leuhistin (C. elegans IC50 = 3.00 microM; P. redivivus IC50 = 37.35 microM). The bioactive peptides adipokinetic hormone and substance P decrease the apparent aminopeptidase activities of each extract suggesting that the peptides compete with the Ala-pNA as substrates. With each extract, adipokinetic hormone appeared to be the more effective substrate. Digestion of adipokinetic hormone by C. elegans and P. redivivus extracts in the presence and absence of 1 mM amastatin produced distinct chromatographic profiles that suggest different digestion patterns for the two species. However, amastatin had clear effects on chromatographic profiles from each species indicating that an aminopeptidase is involved in the digestion of the peptide substrates. The data presented indicate that extracts of free-living nematodes are capable of metabolizing peptide hormones, and that this metabolism involves substrate-selective aminopeptidases.  相似文献   

18.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

19.
Cunninghamella elegans oxidized naphthalene to ethyl acetate-soluble and water-soluble metabolites. Experiments with [14C]-naphthalene indicated that 21% of the substrate was converted into metabolites. The ratio of organic-soluble metabolites to water-soluble metabolites was 76:24. The major ethyl acetate-soluble naphthalene metabolites were trans-1,2-dihydroxy-1,2-dihydro-naphthalene, 4-hydroxy-1-tetralone, and 1-naphthol. Enzymatic treatment of the aqueous phase with either arylsulfatase or beta-glucuronidase released metabolites of naphthalene that were extractable with ethyl acetate. In both cases, the major metabolite was 1-naphthol. The ratio of water-soluble sulfate conjugates to water-soluble glucuronide conjugates was 1:1. Direct analysis of the aqueous phase by high-pressure liquid and thin-layer chromatographic and mass spectrometric techniques indicated that 1-naphthyl sulfate and 1-naphthyl glucuronic acid were major water-soluble metabolites formed from the fungal metabolism of naphthalene. C. elegans oxidized biphenyl primarily to 4-hydroxy biphenyl. Deconjugation experiments with biphenyl water-soluble metabolites indicated that the glucuronide and sulfate ester of 4-hydroxy biphenyl were metabolites. The data demonstrate that sulfation and glucuronidation are major pathways in the metabolism of aromatic hydrocarbons by fungi.  相似文献   

20.
Adiponectin is an adipokine with insulin-sensitising actions in vertebrates. Its receptors, AdipoR1 and AdipoR2, are PAQR-type proteins with 7-transmembrane domains and topologies reversed that of GPCR's, i.e. their C-termini are extracellular. We identified three adiponectin receptor homologs in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the intestine (the main fat-storing tissue), hypodermis, muscles, neurons and secretory tissues, from which they could exert systemic effects. Analysis of mutants revealed that paqr-1 and -2 are novel metabolic regulators in C. elegans and that they act redundantly but independently from paqr-3. paqr-2 is the most important of the three paqr genes: mutants grow poorly, fail to adapt to growth at low temperature, and have a very high fat content with an abnormal enrichment in long (C20) poly-unsaturated fatty acids when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations in aak-2, the C. elegans homolog of AMPK, or nhr-80, another nuclear hormone receptor gene, suppress the growth phenotype of paqr-2 mutants, probably because they restore the balance between energy expenditure and storage. We conclude that paqr-1 and paqr-2 are receptors that regulate fatty acid metabolism and cold adaptation in C. elegans, that their main function is to promote energy utilization rather than storage, and that PAQR class proteins have regulated metabolism in metazoans for at least 700 million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号