首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A cDNA encoding the Calvin cycle enzyme transketolase (TKL; EC 2.2.1.1) was isolated from Sorghum bicolor via subtractive differential hybridization, and used to isolate several full-length cDNA clones for this enzyme from spinach. Functional identity of the encoded mature subunit was shown by an 8.6-fold increase of TKL activity upon induction of Escherichia coli cells that overexpress the spinach TKL subunit under the control of the bacteriophage T7 promoter. Chloroplast localization of the cloned enzyme is shown by processing of the in vitro synthesized precursor upon uptake by isolated chloroplasts. Southern blot-analysis suggests that TKL is encoded by a single gene in the spinach genome. TKL proteins of both higher-plant chloroplasts and the cytosol of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a possible eubacterial origin of these nuclear genes. Chloroplast TKL is the last of the demonstrably chloroplast-localized Calvin cycle enzymes to have been cloned and thus completes the isolation of gene probes for all enzymes of the pathway in higher plants.Abbreviations RPE ribulose-5-phosphate 3-epimerase - RPI ribose-5-phosphate isomerase - TKL transketolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - PGK phosphoglycerate kinase - FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - OPPP oxidative pentose phosphate pathway - Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - FBA fructose-1,6-bisphosphate aldolase - IPTG isopropyl -d-thiogalactoside - TPI triosephosphate isomerase  相似文献   

2.
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - FBA fructose-1,6-bisphosphate aldolase  相似文献   

3.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

4.
W. M. Kaiser  J. A. Bassham 《Planta》1979,144(2):193-200
The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.Abbreviations DHAP dihydroxyacetone phosphate - GAP 3-phosphoglyceraldehyde - PGA 3-phosphoglycerate - HMP hexose monophosphates - including F6P fructose-6-phosphate - G6P glucose-6-phosphate - GIP glucose-1-phosphate - 6-PGL phosphogluconate - PMP pentose monophosphates - including R5P ribose-5-phosphate - Ru5P ribulose-5-phosphate - X5P xylulose-5-phosphate - E4P erythrose-4-phosphate - S7P sedoheptulose-7-phosphate - FBP fructose-1,6-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

5.
d-Ribose-5-phophate ketol-isomerase (EC 5.3.1,6), d-ribuIose-5-phosphate 3-epimerase (EC 5.1.3.1) and d-sedoheptulose-7-phosphate: d-gIyceraldehyde-3-phosphate glycolaldehyde-transferase (EC 2.2.1,1) have been partially purified. d-Ribose-5-phosphate ketol-isomerase was purified from spinach by column chromatography with DEAE-cellulose and DEAE-Sephadex A-50; d-ribulose-5-phosphate 3-epimerase was purified from baker’s yeast by column chromatography with DEAE-cellulose; and d-sedoheptulose-7-phosphate: d-glyceraldehyde-3-phosphate glycolaldehydetransferase was purified from a Bacillus species No. 102 mutant G3–46–22–6 by column chromatography with DEAE-cellulose. The preparations were used for the determination of the activities of these enzymes in the parent and d-ribose-forming mutants of a Bacillus species.  相似文献   

6.
Summary The production of d-ribulose-5-phosphate in an enzyme membrane reactor was examined. Phosphoryl transfer from ATP to d-ribulose was catalysed by d-ribulokinase isolated from Klebsiella pneumoniae. For production of d-ribulose-5-phosphate the phosphoryl donor ATP was used either in stoichiometric or in catalytic amounts. Using catalytic amounts of ATP requires a second enzyme, e.g. pyruvate kinase, to regenerate ATP. The kinetic parameters for d-ribulokinase and pyruvate kinase were determined to calculate the performance of an enzyme membrane reactor for continuous production of d-ribulose-5-phosphate. Both processes operated for more than 200 h. Regardless of whether ATP was used in catalytic or stoichiometric amounts, about the same production parameters were determined. In continuous production space/time yields of 117 g (with ATP regeneration) and 103 g (without ATP regeneration) of d-ribulose-5-phosphate 1–1 per day were reached.Offprint requests to: D. Gygax  相似文献   

7.
A recombinant Escherichia coli strain was developed to produce guanosine 5′-diphosphate (GDP)-l-fucose, donor of l-fucose, which is an essential substrate for the synthesis of fucosyloligosaccharides. GDP-d-mannose-4, 6-dehydratase (GMD) and GDP-4-keto-6-deoxymannose 3, 5-epimerase 4-reductase (WcaG), the two crucial enzymes for the de novo GDP-l-fucose biosynthesis, were overexpressed in recombinant E. coli by constructing inducible overexpression vectors. Optimum expression conditions for GMD and WcaG in recombinant E. coli BL21(DE3) were 25°C and 0.1 mM isopropyl-β-d-thioglucopyranoside. Maximum GDP-l-fucose concentration of 38.9 ± 0.6 mg l−1 was obtained in a glucose-limited fed-batch cultivation, and it was enhanced further by co-expression of NADPH-regenerating glucose-6-phosphate dehydrogenase encoded by the zwf gene to achieve 55.2 ± 0.5 mg l−1 GDP-l-fucose under the same cultivation condition.  相似文献   

8.
A one-pot enzymatic synthesis of 2′-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase was established. Glycolysis by baker’s yeast (Saccharomyces cerevisiae) generated ATP which was used to produce d-glyceraldehyde 3-phosphate production from glucose via fructose 1,6-diphosphate. The d-glyceraldehyde 3-phosphate produced was transformed to 2′-deoxyribonucleoside via 2-deoxyribose 5-phosphate and then 2-deoxyribose 1-phosphate in the presence of acetaldehyde and a nucleobase by deoxyriboaldolase, phosphopentomutase expressed in Escherichia coli, and a commercial nucleoside phosphorylase. About 33 mM 2′-deoxyinosine was produced from 600 mM glucose, 333 mM acetaldehyde and 100 mM adenine in 24 h. 2′-Deoxyinosine was produced from adenine due to the adenosine deaminase activity of E. coli transformants.  相似文献   

9.
Degl'Innocenti  E.  Guidi  L.  Soldatini  G.F. 《Photosynthetica》2002,40(1):121-126
The effects of long-term exposure to ozone (O3, 60 mm3 m-3 for 5 h d-1) on some Calvin cycle enzymes, in particular those modulated by the thioredoxin system, were studied in two poplar clones. These clones differ in sensitivity to O3. In the I-214 clone, the first effects from O3 treatment were seen after 40 d of fumigation, while the Eridano clone showed visible symptoms of damage after only 15 d of the treatment. Specific activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39) diminished in both the clones, while specific activity of phosphoenolpyruvate carboxylase (E.C. 4.1.1.31) increased. Exposure to O3 also caused a reduction in the specific activity of ribulose-1,5-bisphosphate kinase (E.C. 2.7.1.19) in both clones. At the end of the exposure to O3, specific activity of glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.13) increased in I-214 and remained similar to the control in Eridano, whereas specific activity of fructose-1,6-bisphosphate phosphatase (E.C. 3.1.3.11) was higher in Eridano and similar to the control in I-214.  相似文献   

10.
Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar l-arabinose, a product of the degradation of lignocellulosic biomass. The resultant CRA1 recombinant strain expressed the Escherichia coli genes araA, araB, and araD encoding l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, respectively, under the control of a constitutive promoter. Unlike the wild-type strain, CRA1 was able to grow on mineral salts medium containing l-arabinose as the sole carbon and energy source. The three cloned genes were expressed to the same levels whether cells were cultured in the presence of d-glucose or l-arabinose. Under oxygen deprivation and with l-arabinose as the sole carbon and energy source, strain CRA1 carbon flow was redirected to produce up to 40, 37, and 11%, respectively, of the theoretical yields of succinic, lactic, and acetic acids. Using a sugar mixture containing 5% d-glucose and 1% l-arabinose under oxygen deprivation, CRA1 cells metabolized l-arabinose at a constant rate, resulting in combined organic acids yield based on the amount of sugar mixture consumed after d-glucose depletion (83%) that was comparable to that before d-glucose depletion (89%). Strain CRA1 is, therefore, able to utilize l-arabinose as a substrate for organic acid production even in the presence of d-glucose.  相似文献   

11.
Ribose-5-phosphate isomerase A (RpiA) plays an important role in interconverting between ribose-5-phosphate (R5P) and ribulose-5-phosphate in the pentose phosphate pathway and the Calvin cycle. We have determined the crystal structures of the open form RpiA from Vibrio vulnificus YJ106 (VvRpiA) in complex with the R5P and the closed form with arabinose-5-phosphate (A5P) in parallel with the apo VvRpiA at 2.0 Å resolution. VvRpiA is highly similar to Eschericihia coliRpiA, and the VvRpiA-R5P complex strongly resembles the E. coli RpiA-A5P complex. Interestingly, unlike the E. coli RpiA-A5P complex, the position of A5P in the VvRpiA-A5P complex reveals a different position than the R5P binding mode. VvRpiA-A5P has a sugar ring inside the binding pocket and a phosphate group outside the binding pocket: By contrast, the sugar ring of A5P interacts with the Asp4, Lys7, Ser30, Asp118, and Lys121 residues; the phosphate group of A5P interacts with two water molecules, W51 and W82.  相似文献   

12.
D. F. E. Richter  G. O. Kirst 《Planta》1987,170(4):528-534
d-Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and d-mannitol dehydrogenase (EC 1.1.1.67) were estimated in a cell-free extract of the unicellular alga Platymonas subcordiformis Hazen (Prasinophyceae), d-Mannitol dehydrogenase had two activity maxima at pH 7.0 and 9.5, and a substrate specifity for d-fructose and NADH or for d-mannitol and NAD+. The K m values were 43 mM for d-fructose and 10 mM for d-mannitol. d-Mannitol-1-phosphate dehydrogenase had a maximum activity at pH 7.5 and was specific for d-fructose 6-phosphate and NADH. The K m value for d-fructose 6-phosphate was 5.5 mM. The reverse reaction with d-mannitol 1-phosphate as substrate could not be detected in the extract. After the addition of NaCl (up to 800 mM) to the enzyme assay, the activity of d-mannitol dehydrogenase was strongly inhibited while the activity of d-mannitol-1-phosphate dehydrogenase was enhanced. Under salt stress the K m values of the d-mannitol dehydrogenase were shifted to higher values. The K m value for d-fructose 6-phosphate as substrate for d-mannitol-1-phosphate dehydrogenase remained constant. Hence, it is concluded that in Platymonas the d-mannitol pool is derectly regulated via alternative pathways with different activities dependent on the osmotic pressure.Abbreviations Fru6P d-fructose 6-phosphate - Mes 2-(N-morpholino)ethanesulfonic acid - MT-DH d-mannitol-dehydrogenase - MT1P-DH d-mannitol-1-phosphate dehydrogenase - Pipes 1,4-piperazinediethanesulfonic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

13.
When spinach (Spinacia oleracea L.) leaf disks were incubated in 10% polyethylene glycol to induce water stress, the ratio of glucose-1-phosphate to glucose-6-phosphate increased. This increase indicated an imbalance in the phosphoglucomutase (EC 2.7.5.1) reaction, which was earlier observed to be close to equilibrium, and was accompanied by higher fructose-1,6-bisphosphate and ribulose-1,5-bisphosphate concentrations. Because starch degradation was assumed to be the source of the glucose-1-phosphate accumulation, the kinetic properties of plastidic phosphoglucomutase were analysed. It was found that physiological concentrations of both sugar bisphosphates inhibited phosphoglucomutase by about 50%. From this observation it was concluded that under conditions in which fructose-1,6-bisphosphate and ribulose-1,5-bisphosphate accumulated, an inhibition of phosphoglucomutase activity restricted the carbon exchange between the Calvin cycle and starch turnover. Received: 23 March 1998 / Accepted: 26 August 1998  相似文献   

14.
Determination of enzyme activities on the non-oxidative section of the pentose phosphate pathway in d-ribose-forming mutants of a Bacillus species revealed that two strains, which were isolated as shikimic acid-requiring mutants, lacked d-sedoheptulose-7-phosphate: d-glyceraldehyde glycolaldehydetransferase (EC 2.2.1.1) and one strain, which was isolated as d-gluconate-non-utilizing mutant, lacked d-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1). These three strains were also found to have a kind of pleiotropic property, hardly growing on d-glucose.  相似文献   

15.
The pentose-phosphate pathway ofEscherichia coli K-12, in addition to its role as a route for the breakdown of sugars such as glucose or pentoses, provides the cell with intermediates for the anabolism of amino acids, vitamins, nucleotides, and cell wall constituents. Through its oxidative branch, it is a major source of NADPH. The expression of the gene for NADP-dependent 6-phospho-gluconate dehydrogenase (gnd) is regulated by the growth rate inE. coli. The recently identified gene for ribulose-5-phosphate 3-epimerase (rpe) is part of a large operon that comprises among others genes for the biosynthesis of aromatic amino acids. In recent years, genes for all enzymes of the pathway have been cloned and sequenced. Isoenzymes have been found for transketolase (genestktA andtktB), ribose-5-phosphate isomerase (rpiA andrpiB) and transaldolase (talA andtalB).  相似文献   

16.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (phosphorylating, E.C. 1.2.1.13) (GAPDH) of higher plants exists as an A2B2 heterotetramer that catalyses the reductive step of the Calvin cycle. In dark chloroplasts the enzyme exhibits a molecular mass of 600 kDa, whereas in illuminated chloroplasts the molecular mass is altered in favor of the more active 150 kDa form. We have expressed in Escherichia coli proteins corresponding to the mature A and B subunits of spinach chloroplast GAPDH (GapA and GapB, respectively) in addition to a derivative of the B subunit lacking the GapB-specific C-terminal extension (CTE). One mg of each of the three proteins so expressed was purified to electrophoretic homogeneity with conventional methods. Spinach GapA purified from E. coli is shown to be a highly active homotetramer (50–70 U/mg) which does not associate under aggregating conditions in vitro to high-molecular-mass (HMM) forms of ca. 600 kDa. Since B4 forms of the enzyme have not been described from any source, we were surprised to find that spinach GapB purified from E. coli was active (15–35 U/mg). Spinach GapB lacking the CTE purified from E. coli is more highly active (130 U/mg) than GapB with the CTE. Under aggregating conditions, GapB lacking the CTE is a tetramer that does not associate to HMM forms whereas GapB with the CTE occurs exclusively as an aggregated HMM form. The data indicate that intertetramer association of chloroplast GAPDH in vitro occurs through GapB-mediated protein-protein interaction.Abbreviations GAPDH glyceraldehyde-3-phosphate dehydrogenase - CTE carboxy-terminal extension - HMM high molecular mass - ATP adenosine triphosphate - 3PGA 3-phosphoglycerate - 1,3bisPGA 1,3-bisphosphoglycerate - HMM high-molecular mass  相似文献   

17.
14C-Labelled octulose phosphates were formed during photosynthetic 14CO2 fixation and were measured in spinach leaves and chloroplasts. Because mono- and bisphosphates of d-glycero- d-ido-octulose are the active 8-carbon ketosugar intermediates of the L-type pentose pathway, it was proposed that they may also be reactants in a modified Calvin–Benson–Bassham pathway reaction scheme. This investigation therefore initially focussed only on the ido-epimer of the octulose phosphates even though 14C-labelled d-glycero- d-altro-octulose mono- and bisphosphates were also identified in chloroplasts and leaves. 14CO2 predominantly labelled positions 5 and 6 of d-glycero- d-ido-octulose 1,8-P2 consistent with labelling predictions of the modified scheme. The kinetics of 14CO2 incorporation into ido-octulose was similar to its incorporation into some traditional intermediates of the path of carbon, while subsequent exposure to 12CO2 rapidly displaced the 14C isotope label from octulose with the same kinetics of label loss as some of the confirmed Calvin pathway intermediates. This is consistent with octulose phosphates having the role of cyclic intermediates rather than synthesized storage products. (Storage products don’t rapidly exchange isotopically labelled carbons with unlabelled CO2.) A spinach chloroplast extract, designated stromal enzyme preparation (SEP), catalysed and was used to measure rates of CO2 assimilation with Calvin cycle intermediates and octulose and arabinose phosphates. Only pentose (but not arabinose) phosphates and sedoheptulose 7-phosphate supported CO2 fixation at rates in excess of 120 μmol h−1 mg−1 Chl. Rates for octulose, sedoheptulose and fructose bisphosphates, octulose, hexose and triose monophosphates were all notably less than the above rate and arabinose 5-phosphate was inactive. Altro-octulose phosphates were more active than phosphate esters of the ido-epimer. The modified scheme proposed a specific phosphotransferase and SEP unequivocally catalysed reversible phosphate transfer between sedoheptulose bisphosphate and d-glycero- d-ido-octulose 8-phosphate. It was also initially hypothesized that arabinose 5-phosphate, an L-Type pentose pathway reactant, may have a role in a modified Calvin pathway. Arabinose 5-phosphate is present in spinach chloroplasts and leaves. Radiochromatography showed that 14C-arabinose 5-phosphate with SEP, but only in the presence of an excess of unlabelled ribose 5-phosphate, lightly labelled ribulose 5-phosphate and more heavily labelled hexose and sedoheptulose mono- and bisphosphates. However, failure to demonstrate any CO2 fixation by arabinose 5-phosphate as sole substrate suggested that the above labelling may have no metabolic significance. Despite this arabinose and ribose 5-phosphates are shown to exhibit active roles as enzyme co-factors in transaldolase and aldolase exchange reactions that catalyse the epimeric interconversions of the phosphate esters of ido- and altro-octulose. Arabinose 5-phosphate is presented as playing this role in a New Reaction Scheme for the path of carbon, where it is concluded that slow reacting ido-octulose 1,8 bisphosphate has no role. The more reactive altro-octulose phosphates, which are independent of the need for phosphotransferase processing, are presented as intermediates in the new scheme. Moreover, using the estimates of phosphotransferase activity with altro-octulose monophosphate as substrate allowed calculation of the contributions of the new scheme, that ranged from 11% based on the intact chloroplast carboxylation rate to 80% using the carboxylation rate required for the support of octulose phosphate synthesis and its role in the phosphotransferase reaction.  相似文献   

18.
2′-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2′-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2′-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2′-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker’s yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5′-triphosphate generated from adenosine 5′-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via d-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2′-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2′-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2′-deoxyribonucleoside synthesis. 2′-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.  相似文献   

19.
Starting with a fruK (formerly fpk) mutant of Escherichia coli K12 lacking d-fructose-1-phosphate kinase (E.C. 2.7.1.3.), fructose positive derivatives were isolated after introduction of the cloned gene sorE from Klebsiella pneumoniae coding for an l-sorbose-1-phosphate reductase. The new pathway was shwon to proceed from d-fructose via d-fructose-1-phosphate and d-mannitol-1-phosphate to d-fructose 6-phosphate. It involves a transport system and enzymes encoded in the fru and the mtl operons from E. coli K12 as well as in the sor operon from K. pneumoniae respectively.  相似文献   

20.
SYNOPSIS. Tetrahymena pyriformis, strain HSM, do not have glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but contain transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose-5-phosphate 3-epimerase, and ribokinase. The nonoxidative enzymes of the pentose phosphate shunt function in metabolism as indicated by the incorporation of label from [1-14C]ribose into CO2 and glycogen and by the increase in total glycogen content of cultures supplemented with ribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号