首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vance et al. have reported linkage of hereditary motor and sensory neuropathy type I (HMSN I) to the pericentromeric region of chromosome 17. We have studied eight families with HMSN I (also called the hypertrophic form of Charcot-Marie-Tooth disease) for linkage of the disease locus to polymorphic loci in the centromeric region of chromosome 17. Linkage has been confirmed for D17S58 (EW301) with a maximum lod score of 5.89 at theta = 0.08 and for D17S71 (pA10-41) with a maximum lod score of 3.22 at theta = 0.08. EW301 is on 17p, 5.5 centimorgans from the centromere. Two families, previously reported as being linked to the Duffy blood group locus on chromosome 1, were included in this study, and one now provides positive lod scores for chromosome 17 markers. There was no evidence of heterogeneity.  相似文献   

2.
Summary Alzheimer disease (AD) is a devastating neurodegenerative disease leading to global dementia. The familial form (FAD) has been linked to markers on chromosome 21 in some families, most tightly to the loci D21S16 and D21S13 located close to the centromere of the long arm. In other families the FAD mutation has been excluded from the more telomeric D21S1/S11 region, but not from the centromeric region of chromosome 21. We identified two new restriction fragment length polymorphisms (RFLPs) for the locus D21S13 and have used these RFLPs for the analysis of one of the largest known early-onset FAD pedigrees. We calculated pairwise and multipoint lod scores for the loci D21S13, D21S110, and D21S11. Linkage to this region of chromosome 21 was excluded with maximum negative lod scores of -6.4 at D21S13 and D21S110. Thus, it is unlikely that the FAD mutation in this family is located in the region that has shown linkage in other FAD pedigrees. This result provides evidence for genetic heterogeneity of early-onset FAD or a location of FAD centromeric to D21S13.  相似文献   

3.
Branchio-oto-renal syndrome (BOR) is an autosomal dominant disorder associated with external-, middle-, and inner-ear malformations, branchial cleft sinuses, cervical fistulas, mixed hearing loss, and renal anomalies. The gene for BOR was mapped to the long arm of chromosome 8q. Several polymorphic dinucleotide repeat markers were investigated for linkage in two large BOR families, and the region of localization was refined. Two-point linkage analysis yielded the maximum lod scores of 7.44 at theta = .03 and 6.71 at theta = .04, with markers D8S279 and D8S260, respectively. A multipoint analysis was carried out to position the BOR gene with a defined region using markers D8S165, D8S285, PENK, D8S166, D8S260, D8S279, D8S164, D8S286, D8S84, D8S275, D8S167, D8S273, and D8S271. Haplotype analysis of recombination events at these polymorphic loci was also performed in multigeneration BOR kindreds. The linkage analysis and analysis of recombination events identified markers that clearly flank the BOR locus. The order was determined to be D8S260-BOR-D8S279 at odds > 10(3):1 over the other possible orders. This flanking markers provide a resource for high-resolution mapping toward cloning and characterizing the BOR gene.  相似文献   

4.
Familial Mediterranean fever (FMF) is an autosomal recessive disorder of unknown pathogenesis, characterized by recurrent, selflimited attacks of fever with synovitis, peritonitis, or pleurisy. Using DNAs from affected Israeli families, we have recently mapped the gene causing FMF (designated MEF) to the short arm of chromosome 16, with two-point lod scores in excess of 20. In this report we consider the possibility of a second FMF susceptibility locus. Before discovering linkage to markers on chromosome 16, we had found suggestive evidence for linkage to chromosome 17q, with the following maximal two-point lod scores: D17S74 (pCMM86), = 2.47, ( = 0.20); D17S40 (pLEW101), = 2.15( = 0.15); D17S35 (CRI-pP3-1), = 1.78 ( = 0.15); D17S46 (pLEW108), = 1.69 ( = 0.18), D17S254, = 2.30 ( = 0.20). Moreover, multipoint linkage analysis using D17S74 and D17S40 as fixed loci gave = 3.27 approximately 10 centimorgans (cM) telomeric to D17S40. Data with the chromosome 17 markers alone in our families suggested locus heterogeneity. Nevertheless, our families were not separable into complementary subsets showing linkage either to chromosome 16 or to chromosome 17. We also examined the possibility that the positive lod scores for chromosome 17 might reflect a secondary, modifying locus. By several measures of disease severity, families with positive lod scores for chromosome 17 loci had no worse disease than those with negative lod scores for these loci. We conclude that chromosome 17 does not encode a major FMF susceptibility gene for some of the families, nor does it encode a disease-modifying gene. Rather, it would appear that linkage to chromosome 17 is a false positive (type I) error. These results reemphasize the fact that a lod score of 3.0 corresponds to a posterior probability of linkage of 95%, with an attendant 1 in 20 chance of observing a false positive.  相似文献   

5.
Two distinct loci have been proposed for aniridia; AN1 for autosomal dominant aniridia on chromosome 2p and AN2 for the aniridia in the WAGR contiguous gene syndrome on chromosome 11p13. In this report, the kindred segregating for autosomal dominant aniridia, which suggested linkage to acid phosphatase-1 (ACP1) and led to the assignment of the AN1 locus on chromosome 2p, has been updated and expanded. Linkage analysis between the aniridia phenotype and ACP1 does not support the original linkage results, excluding linkage up to theta = 0.17 with Z = -2. Tests for linkage to other chromosome 2p markers. APOB, D2S71, D2S5, and D2S1, also excluded linkage to aniridia. Markers that have been isolated from the chromosome 11p13 region were then analyzed in this aniridia family. Two RFLPs at the D11S323 locus give significant evidence for linkage. The PvuII polymorphism detected by probe p5S1.6 detects no recombinants, with a maximum lod score of Z = 6.97 at theta = 0.00. The HaeIII polymorphism detected by the probe p5BE1.2 gives a maximum lod score of Z = 2.57 at theta = 0.00. Locus D11S325 gives a lod score of Z = 1.53 at theta = 0.00. These data suggest that a locus for aniridia (AN1) on chromosome 2p has been misassigned and that this autosomal dominant aniridia family is segregating for an aniridia mutation linked to markers in the 11p13 region.  相似文献   

6.
Previously we reported suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1–q32. We have now studied an additional independent sample of 44 pedigrees consisting of 34 Taiwanese, 9 English and 1 Welsh family in an attempt to replicate this finding. Narrow and broad models based on Research Diagnostic Criteria or the Diagnostic and Statistical Manual of Mental Disorders, third edition, revised, were used to define the schizophrenia phenotype. Under a dominant genetic model, two-point lod scores obtained for most of the markers were negative except that marker D13S122 gave a total lod score of 1.06 (θ = 0.2, broad model). As combining pedigrees from different ethnic origins may be inappropriate, we combined this replication sample and our original sample, and then divided the total sample into Caucasian (English and Welsh pedigrees) and Oriental (Taiwanese and Japanese pedigrees) groups. The Caucasian pedigrees produced maximized admixture two-point lod scores (A-lod) of 1.41 for the marker D13S119 (θ = 0.2, α = 1.0) and 1.54 for D13S128 (θ = 0, α = 0.3) with nearby markers also producing positive A-lod scores. When five-point model-free linkage analysis was applied to the Caucasian sample, a maximum lod score of 2.58 was obtained around the markers D13S122 and D13S128, which are located on chromosome 13q32. The linkage results for the Oriental group were less positive than the Caucasian group. Our results again suggest that there is a potential susceptibility locus for schizophrenia on chromosome 13q14.1–q32, especially in the Caucasian population. Received: 13 September 1996  相似文献   

7.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

8.
DNA from members of a three-generation pedigree of Irish origin, displaying an autosomal dominant simplex form of epidermolysis bullosa of the epidermolytic, simplex, or Koebner variety (EBS2), was analyzed for linkage with a set of markers derived from the long arm of chromosome 1. Two-point analysis revealed positive lod scores for five of these markers, AT3 (Z = 2.107, theta = 0), APOA2 (Z = 1.939, theta = 0.15), D1S66 (Z = 1.204, theta = 0), D1S13 (Z = 1.026, theta = 0.15), and D1S65 (Z = 0.329, theta = 0.15). Multilocus analysis, incorporating the markers D1S19, D1S16, D1S13, APOA2, D1S66, AT3, and D1S65, resulted in a lod score of 3 maximizing at AT3. These data strongly support previous tentative indications of linkage between EBS2 and genetic markers on the long arm of chromosome 1.  相似文献   

9.
Familial periodic cerebellar ataxia (FPCA) is a heterogeneous group of rare autosomal dominant disorders characterized by episodic cerebellar disturbance. A potassium-channel gene (KCNA1) has been found to be responsible for one of its subgroups, familial periodic cerebellar ataxia with myokymia (FPCA/+M; MIM 160120). A different subgroup that is not associated with myokymia (FPCA/-M; MIM 108500) was recently mapped to chromosome 19p. Here we have performed linkage analysis in two large families with FPCA/-M that also demonstrated neurodegenerative pathology of the cerebellum. Three markers in 19p13 gave significant lod scores (> 3.0), while linkage to KCNA1 and three known loci for spinocerebellar ataxia (SCA1, SCA2, and SCA3) was excluded. The highest lod score was obtained with the marker D19S413 (4.4 at recombination fraction 0), and identification of meiotic recombinants in affected individuals placed the locus between the flanking markers D19S406 and D19S226, narrowing the interval to 19 cM. A CAG trinucleotide-repeat expansion was detected in one family but did not cosegregate with the disease.  相似文献   

10.
Atopy is an IgE-mediated condition known to aggregate in families and is a major risk factor for asthma. As part of the Collaborative Study on the Genetics of Asthma (CSGA), a genome-wide scan for atopy, defined by skin sensitivity to one or more common environmental allergens, was conducted in 287 CSGA families (115 African American, 138 Caucasian and 34 Hispanic). Using a nonparametric genetic analysis approach, two regions were observed in the sample of all families that yielded multipoint lod scores >1.5 (chromosome 11q, lod=1.55 between D11S1986 and D11S1998; chromosome 20p between D20S473 and D20S604, lod=1.54). Modeling that included multiple genomic positions simultaneously indicated that four chromosomal regions accounted for the majority of evidence for linkage in the combined families. These four regions are on chromosomes 10p near D10S1412 (lod=0.94), 11q near D11S1986 (lod=1.76), 17q near D17S784 (lod=0.97) and 20p near D20S473 (lod=1.74). In the subset of pedigrees giving positive evidence for linkage on chromosome 11q, the evidence for linkage increased by lod scores greater than one in four other chromosomal regions: 5q (D5S1480, lod=1.65), 8p (D8S1113, lod=1.60), 12p (D12S372, lod=1.54) and 14q (D14S749, lod=1.70). These results suggest that several regions may harbor genes contributing to the risk for atopy and these may interact with one another in a complex manner.This work is published on behalf of the NHLBI Collaborative Study on the Genetics of Asthma  相似文献   

11.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

12.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

13.
Linkage mapping in a large, seven-generation family with type 2 autosomal dominant retinitis pigmentosa (ADRP) demonstrates linkage between the disease locus (RP1) and DNA markers on the short arm of human chromosome 8. Five markers were most informative for mapping ADRP in this family using two-point linkage analysis. The markers, their maximum lod scores, and recombination distances were ANK1 (ankyrin)--2.0 at 16%; D8S5 (TL11)--5.3 at 17%; D8S87 [a(CA)n repeat]--7.2 at 14%; LPL (lipoprotein lipase)--1.5 at 26%; and PLAT (plasminigen activator, tissue)--10.6 at 7%. Multipoint linkage analysis, using a simplified pedigree structure for the family (which contains 192 individuals and two inbreeding loops), gave a maximum lod score of 12.2 for RP1 at a distance 8.1 cM proximal to PLAT in the pericentric region of the chromosome. Based on linkage data from the CEPH (Paris) reference families and physical mapping information from a somatic cell hybrid panel of chromosome 8 fragments, the most likely order for four of these five loci and the diseases locus is 8pter-LPL-D8S5-D8S87-PLAT-RP1. (The precise location of ANK1 relative to PLAT in this map is not established). The most likely location for RP1 is in the pericentric region of the chromosome. Recently, several families with ADRP with tight linkage to the rhodopsin locus at 3q21-q24 were reported and a number of specific rhodopsin mutations in families with ADRP have since been reported. In other ADRP families, including the one in this study, linkage to rhodopsin has been excluded. Thus mutations at two different loci, at least, have been shown to cause ADRP. There is no remarkable clinical disparity in the expression of disease caused by these different loci.  相似文献   

14.
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance. Genetic linkage studies were undertaken to determine the chromosomal location of the Batten disease mutation (CLN3). Following identification of linkage to the haptoglobin locus, linkage analysis has been carried out in 42 families by using DNA markers for loci on the long arm of human chromosome 16. The maximal lod score between Batten disease and the locus D16S148 calculated for combined sexes is 6.05 at a recombination fraction theta = 0.00. Multilocus analysis using five loci indicated the most likely order to be HP-D16S151-D16S150-CLN3-D16S148-D16S147. The maximal location score for CLN3 was 48 (equivalent to a lod score of 10.4) in that interval within this fixed marker map.  相似文献   

15.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

16.
We report that the Bjornstad syndrome gene maps to chromosome 2q34-36. The clinical association of sensorineural hearing loss with pili torti (broken, twisted hairs) was described >30 years ago by Bjornstad; subsequently, several small families have been studied. We evaluated a large kindred with Bjornstad syndrome in which eight members inherited pili torti and prelingual sensorineural hearing loss as autosomal recessive traits. A genomewide search using polymorphic loci demonstrated linkage between the disease gene segregating in this kindred and D2S434 (maximum two-point LOD score = 4.98 at theta = 0). Haplotype analysis of recombination events located the disease gene in a 3-cM region between loci D2S1371 and D2S163. We speculate that intermediate filament and intermediate filament-associated proteins are good candidate genes for causing Bjornstad syndrome.  相似文献   

17.
Combined factor V-factor VIII deficiency (F5F8D) is a rare, autosomal recessive coagulation disorder in which the levels of both coagulation factor V and coagulation factor VIII are diminished. In order to map and subsequently clone the gene responsible for this phenotype, DNAs from 19 families (16 from Iran, 2 from Pakistan, and 1 from Algeria) with a total of 32 affected individuals were collected for a genomewide linkage search using genotypes of highly informative DNA polymorphisms. All pedigrees except two contained at least one consanguineous marriage. A maximum LOD score (Zmax) of 14.82 for theta = .02 was generated with marker D18S1129 in 18q21; LOD scores > 9 were obtained for several other markers-D18S849, D18S1103, D18S64, and D18S862. Multipoint analysis resulted in Zmax = 18.91 for the interval between D18S1129 and D18S64. Informative recombinants placed the locus for F5F8D between D18S849 and D18S1103, in an interval of approximately 1 cM. These results are similar to the recently reported linkage of this disease to chromosome 18q in Jewish families (Nichols et al. 1997) and provide evidence that the same gene is responsible for all F5F8D among human populations. The difference in clinical severity of the phenotype in unrelated families, as well as the failure to detect a specific haplotype of DNA polymorphisms in the consanguineous Iranian families, suggests the existence of different molecular defects in the F5F8D gene. There exists an apparently gap-free contig with CEPH YACs linking the two markers on either side of the critical region. Positional cloning efforts are now in progress to clone the F5F8D gene.  相似文献   

18.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

19.
A highly polymorphic (dC-dA)n.(dG-dT)n dinucleotide repeat at the PLC1 locus on human chromosome 20 has been identified. Primers flanking the dinucleotide repeat were used for PCR amplification of the repeat region in 37 informative kindreds from the Centre d'Etude du Polymorphisme Humain. Two-point linkage analysis indicates that PLC1 is closely linked to several chromosome 20 markers, including D20S16 (Zmax = 41.25; theta = 0.07), D20S17 (Zmax = 42.81; theta = 0.09), and ADA (Zmax = 57.24; theta = 0.05). Multipoint linkage analysis places the PLC1 locus between D20S18 and D20S17, 11.2 and 6.6 cM, respectively, from these loci (sex-averaged distances). In addition, the PLC1 gene shows linkage to the maturity-onset diabetes of the young (MODY) locus on chromosome 20 with a lod score of 4.57 at theta = 0.089.  相似文献   

20.
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and D?hle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号