首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pf72/Hsp70-1, a heat-shock protein of m.w. 72 kDa from Plasmodium falciparum is one of the Ag of interest to be included in a polyvalent vaccine against malaria. It is one of the major immunogens present in a fraction of purified blood stage parasites that elicited protection against experimental infection of Saimiri monkeys with blood stages of P. falciparum. It is present at all blood stages and one of its B cell epitopes is also detected on the surface of the infected hepatocyte. Moreover, Pf72 appears to be well conserved among different isolates of P. falciparum. We have examined the immune response against Pf72/Hsp70-1 in individuals from different age groups living in a holoendemic area (West Africa). The immune response against the native Ag (purified from schizonts and called Pf/Hsp70) was analyzed both at the humoral level by ELISA and at the cellular level by assessing in vitro proliferation and IFN-gamma production of PBMC. Of the individuals studied 52% had a statistically significant level of anti-Pf/Hsp70 antibodies as compared with unexposed individuals. These positive individuals showed a heterogeneous distribution because significant levels of antibodies were found in 70% of the adults but in only 26% of the children. The presence of Pf/Hsp70-specific reactive T cells in the blood was detected in 32% of the individuals. The total anti-Pf/Hsp70 antibody level (IgG+IgM) appeared strongly age related and correlated positively with parasite exposure, whereas the T cell response failed to correlate either with the antibody level or with age. Moreover, PBMC of donors responded to the Pf/Hsp70 in a dissociated way, namely, by either T cell proliferation or IFN-gamma production. Ten synthetic peptides based on sequences found in the C-terminal part of Pf72/Hsp70-1 were further tested as potential T cell epitopes. The proliferative response of PBMC from individuals continuously exposed to the parasite showed that three peptides more frequently trigger significant T cell proliferation (in 21% to 27% of the individuals) and three others less frequently (10%). None of these peptides allowed detection of reactive T cells in PBMC of Europeans with no previous exposure to malaria. Some of the stimulating peptides are highly similar to human heat-shock Hsc and Hsp70 with large stretches of identical amino acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

3.
Patients with acute Plasmodium falciparum malaria have defective cell-mediated immune responses to malaria-specific Ag (MA). This immunologic defect may partially explain the difficulty with which natural immunity to falciparum malaria develops and may have important implications for the efficacy of potential malaria vaccines in endemic areas. To investigate the basis of this immune defect, we have examined the capacity of PBMC from patients with acute falciparum malaria to produce IL-2 and to express I1-2R in response to Ag stimulation. The effect of exogenous IL-1 and IL-2 on lymphocyte proliferation was studied. Soluble IL-2R levels were measured in acute and convalescent sera. Our results showed that no detectable IL-2 was produced and no IL-2R were expressed by PBMC in response to MA during the acute infection. IL-2 production and IL-2R expression were also depressed when PBMC were exposed to streptococcal Ag. The specific immune defect was not reconstituted by the addition of graded doses of purified human IL-1 or IL-2 and could not be attributed to suppressor adherent cells. In contrast to the absence of IL-2 and cell-bound IL-2R, circulating soluble IL-2R was elevated in acute sera. These findings suggest that the lack of IL-2, through either a defect in its production or inhibition of its activity, may be the basis of the Ag-specific immune unresponsiveness in acute P. falciparum malaria.  相似文献   

4.
Merozoites of the malaria parasite Plasmodium falciparum carry surface proteins processed from a precursor termed p190 or p195. Polymorphism has been reported in this protein. Since the protein is a candidate for a malaria vaccine, it is important to understand the nature of this polymorphism. We have determined the complete nucleotide sequence of the p190 gene from the MAD20 strain (a Papua New Guinea isolate). Comparisons of the gene with that from other strains of P. falciparum allowed us to study the genetic basis of the antigen's polymorphism. The gene consists of sequences distributed in variable blocks, which are separated by conserved or semi-conserved sequences. Variable sequences occur both in regions that code for tripeptide repeats and in regions with no apparent repeats. Interestingly, according to the present data, variable sequences are not widely polymorphic but fall into two distinct types. We argue that the p190 protein is encoded by dimorphic alleles capable of limited genetic exchange and present evidence at the nucleotide level documenting intragenic recombination in Plasmodium.  相似文献   

5.
Two conserved regions from the genetically polymorphic p190 molecule of the malaria parasite Plasmodium falciparum have previously been expressed in Escherichia coli as separate polypeptides (190.L and 190.M) or as a single fusion protein (190.N). In the present study we investigated whether human B and T lymphocytes recognize these conserved regions. The more amino-terminal region, 190.L (corresponding to residues 188-363 of the encoded protein sequence) reacted preferentially with sera from donors living in a malaria-endemic area. Also, EBV-transformed B cells, from a healthy donor living in a malaria-mesoendemic area, were fused with a human-mouse hybrid line (SPM4-0), yielding two hybridomas whose products recognized both 190.L and the fusion protein 190.N, but not the 190.M polypeptide. A large number of p190-specific T cell clones were obtained from PBMC of a noninfected donor, after in vitro stimulation with the recombinant fusion protein 190.N. The clones reacted with intact, parasite-derived p190, as well as either 190.L or 190.M. Four clones that recognized the more amino-terminal fragment also responded to infected E. According to these results the more amino-terminal conserved sequences of p190 have the requisites to be immunogenic in humans.  相似文献   

6.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

7.
The comparison of malaria indicators among populations with different genetic backgrounds and uniformly exposed to the same parasite strains, is one of the approaches to the study of human heterogeneities in the response to the infection. The results of our comparative studies conducted in Burkina Faso, West Africa, showed consistent interethnic differences in Plasmodium falciparum infection rates, malaria morbidity, prevalence and levels of antibodies to various P. falciparum antigens, and genetic background. The differences in the immune response were not explained by the entomological observations which indicated substantially uniform exposure to infective bites. The presence in the same epidemiological context of individuals characterized by different immune reactivity to malaria represents an ideal opportunity to study the possible relationships between the baseline level of anti-malaria immunity of a population and the protective efficacy of control measures based on the reduction of transmission. In spite of similar reduction of entomological inoculation rates obtained by permethrin-impregnated curtains, ethnic- and age-dependent efficacy was observed. These studies demonstrate the existence of marked interethnic differences in the susceptibility to P. falciparum malaria, probably involving the genetic regulation of humoral immune responses. These differences should be considered in the development of anti-malaria vaccines and in the evaluation and application of malaria control strategies.  相似文献   

8.
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.  相似文献   

9.
10.
We have investigated whether naturally induced immunity to Plasmodium falciparum thrombospondin related adhesive protein contributes to protection against malaria in humans. We have carried out a case control study in children living in an endemic region of West Africa to reveal associations between PfTRAP seroprevalence and the risk of cerebral malaria. Sera collected from the case and control groups were analysed by ELISA to compare their serum reactivity against PfTRAP, the circumsporozoite protein and the merozoite surface protein 1. Children with uncomplicated malaria had a significantly higher PfTRAP seroprevalence when compared to children with cerebral malaria. The risk of developing cerebral malaria appeared to depend on the reciprocal relationship between sporozoite inoculation rates and humoral immunity against PfTRAP. Our results suggest that naturally induced humoral immunity against PfTRAP contributes to the development of protection against severe malaria. Experimentally induced immunity against TRAP in different rodent models has consistently proven to elicit a high degree of protection against malaria. This together with the functional properties of TRAP and data describing CD4 and CD8 epitopes for PfTRAP indicate that this molecule could increase the protective efficiency of available sporozoite malaria vaccines.  相似文献   

11.
The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.  相似文献   

12.
The fine specificities of antibodies to the circumsporozoite (CS) protein of Plasmodium falciparum, present in the sera of volunteers immunized with irradiated P. falciparum sporozoites, were defined and compared to those of sera from persons living in a malaria-endemic area in West Africa. The specificity of these anti-CS antibodies was determined by ELISA, using recombinant proteins and synthetic peptides containing repeat and nonrepeat sequences of this CS protein. All 10 serum samples of the five sporozoite-immunized volunteers displayed very high antibody titers to the immunodominant repeat (NANP)n of the CS protein. However, only three of the serum samples of these vaccinees reacted with a single nonrepeat region and only at low titers. In contrast, a high percentage of sera from adults living in the malaria-endemic area who had been exposed to sporozoites, as well as liver and blood stages of P. falciparum, had high antibody levels, not only to the repeats but also to several nonrepeat regions of the CS protein. Furthermore, a number of sera from children living in this endemic area displayed appreciable levels of antibodies to the nonrepeat regions, in the absence of any antirepeat reactivity. Sera of Saimiri monkeys, which had undergone multiple blood-induced P. falciparum infections, consistently contained high titers of antibodies to several nonrepeat sequences of the CS protein, whereas only a few of these sera had low titers of antirepeat antibodies. Antibody binding sites, in nonrepeat regions, were mapped using synthetic polymers containing multiple copies of selected C-terminal sequences of the P. falciparum CS protein. The binding to sporozoites of antibodies to nonrepeat regions of the CS protein was determined. The basis for the differences in antibody binding sites of sera from persons immunized with irradiated sporozoites, compared to those from an endemic area, is discussed.  相似文献   

13.
A FPLC purified 38kDa protease (Bm mf S-7) isolated from B. malayi microfilarial soluble antigen was identified. It showed pronounced reactivity with sera collected from 'putatively immune' asymptomatic and amicrofilaraemic individuals residing in an endemic area for bancroftian filariasis. Further the immune protective activity of Bm mf S-7 antigen was evaluated in susceptible hosts, jirds (Meriones unguiculatus) against B. malayi filarial infection. The antigen showed 89% cytotoxicity against mf and 87-89% against infective (L3) larvae in in vitro antibody dependent cellular cytotoxicity Assay (ADCC) and in situ micropore chamber methods. Bm mf S-7 immunized jirds after challenge infection showed 81.5% reduction in the adult worm burden. The present study has shown that, the 38kDa microfilarial proteases (Bm mf S-7) could stimulate a strong protective immune response against microfilariae and infective larvae in jird model to block the transmission of filariasis. Analysis of IgG subclasses against Bm mf S-7 revealed a significant increase in IgG2 and IgG3 antibodies in endemic normals. Lymphocyte proliferation to Bm mf S-7 was significantly high in endemic normal group as compared to that in clinical and microfilarial carriers. Significantly enhanced levels of IFN-gamma in the culture supernatant of PBMC of endemic normals followed by stimulation with Bm mf S-7 suggest that the cellular response in this group is skewed towards Th 1 type.  相似文献   

14.
Liver-stage antigen (LSA)-1 is a candidate vaccine molecule for Plasmodium falciparum malaria, but knowledge of the evolution of naturally acquired immune responses to LSA-1 in African children is lacking. We therefore assessed cellular immune responses to two defined T cell epitopes of LSA-1, during and after uncomplicated P. falciparum malaria in a group of Gabonese children. In terms of their prevalence, interferon (IFN)-gamma responses of peripheral blood mononuclear cells (PBMC) to an LSA-1 N-terminal peptide, T1, were significantly higher when measured during the acute phase compared with convalescence. IFN-gamma responses to the LSA-J (hinge region) peptide showed a similar profile, but at a lower prevalence. Depletion experiments confirmed that CD8+ T cells are a major source of peptide-driven IFN-gamma, but both lymphoproliferation and the production of IL-10 in response to either of the peptides was low in all children at all times. PBMC from 25% of the children failed to produce IFN-gamma in response to either peptide at any time-point. The results suggest that lymphocytes producing IFN-gamma in response to at least one T cell epitope of LSA-1 are most frequent in the peripheral circulation during the acute phase of P. falciparum malaria. Thus, in this case, the generalised suppression of cell-mediated responses which characterises acute malaria does not affect liver-stage antigen-specific IFN-gamma production. These findings imply that measurements of the frequency of parasite antigen-specific cellular immune responses in clinically healthy individuals may represent significant underestimations, which has important implications for the design of field-based vaccine antigen-related studies.  相似文献   

15.
A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys) links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA) encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i) total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS); ii) total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii) total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.  相似文献   

16.
In rodent malaria model systems, protective immunity induced by immunization with irradiated sporozoites is eliminated by in vivo depletion of CD8+ T cells, and adoptive transfer of CTL clones against the circumsporozoite protein protects against malaria. We recently demonstrated that volunteers immunized with irradiated Plasmodium falciparum sporozoites produce CTL against peptide 368-390 of the P. falciparum circumsporozoite protein. To determine whether natural exposure to malaria induced similar CTL, we studied 11 adult, male, life-long residents of a highly malarious area of Kenya, who were selected because their lymphocytes had been shown to proliferate after stimulation with peptides 361-380, 371-390, or 368-390 and because nine had been resistant to malaria in previous studies. In four of the 11 individuals there was peptide-specific, genetically restricted, CTL activity. In all four individuals, this activity was unaffected by depletion of CD4+ T cells. In three volunteers the activity was eliminated or reduced by depletion of CD8+ T cells; in the fourth volunteer the CD8+ T cell depletion was uninterpretable. This first demonstration of CD8+ T cell, genetically restricted, Ag-specific CTL against a malaria protein among individuals exposed to endemic malaria provides a foundation for studying the relationship between circulating CTL and resistance to malaria infection.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) glycolipids abound on the cell surface at the merozoite stage of Plasmodium falciparum life cycle are a central toxin in malaria. The contribution of GPI specific humoral immune responses to protection against malaria pathology is not clear, since studies on the correlation between anti-GPI antibody titers and disease severity have yielded contradictory results. Here, we present the application of a carbohydrate microarray based on synthetic PfGPI glycans to assess levels and fine specificities of anti-GPI antibody responses in healthy and malaria diseased individuals. Furthermore, the age dependent development of humoral immune responses against GPI in malaria-exposed children was investigated. Anti-GPI antibodies were only rarely found in children under the age of 18 months. Sera from subjects with severe malaria and healthy children contained antibodies that recognized predominantly synthetic Man3-GPI and Man4-GPIs. In contrast, antibodies in sera of children with mild malaria also showed substantial reactivity with truncated glycans comprising glucosamine–inositol moieties without mannose or with only one or two mannose residues.  相似文献   

18.
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.  相似文献   

19.
20.
MOTIVATION: We present a study of antigen expression signals from a newly developed high-throughput protein microarray technique. These signals are a measure of antibody-antigen binding activity and provide a basis for understanding humoral immune responses to various infectious agents and supporting vaccine and diagnostic development. RESULTS: We investigate the characteristics of these expression profiles and show that noise models, normalization, variance estimation and differential expression analysis techniques developed in the context of DNA microarray analysis can be adapted and applied to these protein arrays. Using a high-dimensional dataset containing measurements of expression profiles of antibody reactivity against each protein (295 antigens and 9 controls) in 42 malaria (Plasmodium falciparum) protein arrays derived from 22 donors with various clinical presentations of malaria, we present a methodology for the analysis and identification of significantly expressed antigens targeted by immune responses for individual sera, groups of sera and across stages of infection. We also conduct a short study highlighting the top immunoreactive antigens where we identify three novel high priority antigens for future evaluation. AVAILABILITY: All software programs (in R) used for the analysis described in this paper are freely available for academic purposes at www.igb.uci.edu/servers/servers.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号