首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤微生物削弱了水生-陆地系统补贴对植物生长的正向影响 水生-陆地系统补贴形成的联结作用在构建群落和调节生态系统功能方面发挥重要作用。在营养贫瘠的生态系统中(例如密歇根湖周围的淡水沙丘),水生-陆生系统补贴显得尤为重要。春季成年蠓在密歇根湖涌出,成群交配,然后死亡。蠓尸体在植物的基部形成土丘状,通过输入营养提高植物的生产力。然而,水生-陆地系统补贴对植物生产力的影响可能取决于其他生物的交互作用,特别是土壤微生物可能通过促进养分转化为植物可利用的形式或与植物竞争养分而发挥关键作用。在温室实验中,我们检验了湖生蠓(Chironomidae)的尸体和土壤微生物如何独立和相互影响一种常见沙丘草(沙拂子茅,Calamovilfa longifolia)的生长表现。为确定蠓是否影响土壤非生物特性,我们检验了添加蠓如何影响土壤养分和土壤湿度。研究结果显示,蠓极大地增加了植物生物量,但其效应的大小受土壤微生物的影响。在没有土壤微生物的情况下,添加蠓的植物生物量比没有添加的高7倍,而在有土壤微生物的情况下,植物生物量提高了3倍。蠓对植物生长的促进作用可能由于它们向土壤中输入养分所导致,因为与沙丘土壤相比,蠓的氮、磷、钾含量分别高100倍、10倍和150倍。我们的研究结果表明,土壤微生物可能与植物竞争这些养分。总之,我们发现蠓是重要的水生-陆地系统补贴,对密歇根湖沿岸植物生产力产生强烈和正向的影响,但水生-陆地系统补贴作用必须在生态群落内发生的复杂相互作用的背景下考虑。  相似文献   

2.
Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.  相似文献   

3.
Patterns of coastal dune vegetation are closely related with soil conditions controlled by geomorphic forms and processes. This study developed a conceptual model integrating these relationships in a spatially explicit manner. A rectangle of 180 × 280 m containing 126 grids of 20 × 20 m was established in the Sindu coastal dunefield in west Korean Peninsula. Sampling from each grid determined 11 soil properties and identified percent cover of 21 woody and herbaceous plant species. Digital elevation models were generated by topographic survey and used to derive eight topographic parameters. Redundancy analysis and canonical correspondence analysis examined the effect of geomorphic factors on edaphic characteristics and the edaphic influence on spatial distribution of vegetation, respectively. The spatial pattern of soil properties and plant species were inferred from spatial interpolation techniques. In the foredune area, distance from the coastline was a significant indicator of soil nutrients derived from the marine sources by aeolian processes. This favored the dominance by Elymus mollis. Moisture-tolerant species (e.g., Calamagrostis epigeios) had high cover in the acidic soils of dune slacks, which covaried with wetness index, an indirect measure of the depth to the freshwater table. Vegetation–soil interactions (e.g., nitrogen fixation by legumes) were important in secondary dune areas, with topographic effects less significant. Vegetation, soil, and geomorphic factors are closely connected in a causal chain across a whole dune area. Our model thus addresses the importance of integrating foredune, dune slack, and secondary dune into one continuous system.  相似文献   

4.
Several environmental factors influence the distribution of plants in coastal salt marshes. Substrate salinity is among the major factors preventing several species from establishing near the water line. However, interspecific competition for light and nutrients is often significant in determining the upper limit of plants along the salt marsh gradient. In this study, we tested the effects of substrate salinity and light and nutrient availability on the performance of the annual Aster laurentianus (Asteraceae), an endangered species of eastern Canadian salt marshes. This species is typically found in a narrow band along the shores of shallow lagoons, cornered between the high water line and the dense, herbaceous community of the upper marsh. Low light availability was the most significant factor limiting plant performance. Salinity had little effect on A. laurentianus as, unexpectedly, did nutrient availability. Yet plants were able to absorb nutrients when these were made more available. Luxury consumption, the uptake of excess nutrients, may make sense for this annual plant because the habitat in which it grows is subject to frequent disturbances (e.g., sand accretion and salinity pulses) that may kill canopy species and release suppressed A. laurentianus individuals. These results suggest that interspecific competition for light may play a significant role in restraining A. laurentianus from the upper part of salt marshes. Luxury consumption may help the species to opportunistically take advantage of release from taller species, particularly towards the upper edge of the salt marsh gradient.  相似文献   

5.
Abstract Spinifex sericeus, a common coastal sand dune grass, typically exhibits decreased vigour in the more stabilized section of the dunes when compared with the active foredune. These differences in vigour appear to be related to different environmental conditions across the dunes such as sand burial and salt spray deposition, both generally decreasing with distance inland. An experiment following the fate of foliar and root applications of 22Na indicated that it may be taken up by the roots or the foliage and then translocated throughout the whole plant, and perhaps even extruded by the roots. Salt spray appeared to have a positive effect on the growth of S. sericeus when applied in conjunction with N and P but had no effect when N and P were not added. Adding acid-washed or non acid-washed foredune sand also resulted in a positive growth response. The results of these experiments indicate that the vigorous growth of S. sericeus on the dynamic sections of the foredunes is due to a stimulation of growth caused by sand deposition.  相似文献   

6.
Low water and nutrient availability and significant sand movement, salt spray, and soil salinity are typical of coastal dunes. These conditions are generally unfavorable for the various life stages of plants and especially for seedlings. However, the intensity of these stresses decreases landward, even over short distances, with significant effects on community composition. On coastal dunes in subarctic Québec, Canada, Honckenya peploides (Caryophyllaceae) colonizes the upper beach where it forms small mounds called embryo dunes. Leymus mollis (Poaceae) is mostly restricted to the foredune; however, a few individuals successfully establish on the upper beach, particularly on embryo dunes. We hypothesized that this differential distribution is associated with differences in the tolerance of the two species' seedlings to physical stresses. Honckenya peploides and L. mollis seedling tolerance to sand burial, salt spray, soil salinity, and nutrient and water availability was assessed in greenhouse experiments. Unexpectedly, our results showed that tolerance to sand burial, salt spray, and soil salinity was lower for H. peploides than for L. mollis. If seeds are available and seedlings tolerate the conditions prevailing on the upper beach well, why are mature L. mollis individuals rare in this habitat? We suggest that massive abrasion events (e.g., violent storm waves and ice thrust) restrict the presence of the species on the upper beach.  相似文献   

7.
Herbivory is a major factor affecting both the performance and the fitness of the species composing a plant community and, ultimately, conditioning its temporal and spatial dynamics. Coastal dunes are a typical example of primary succession where different biotic and abiotic factors determine plant species occurrence; however, the effect of insect herbivory herein has remained little explored. To address this matter, we combined an observational study along a successional gradient with a green-house experiment to determine the occurrence and the impact of plant–aphid interactions. We focused on the species Schizaphis rufula, a widespread and abundant aphid associated with dune grasses in early stages of primary succession in Europe. Firstly, we studied aphid infestation rates on the dune grass Ammophila arenaria along a succession gradient in three locations of the North Sea coast to address the relationship between plant community composition and aphid occurrence; secondly, we tested the effect of aphid herbivory on a set of dune species typical for the different stages of succession. We found that the degree of aphid infestation was inversely correlated with the degree of dune fixation. The results of the experiment showed that aphid multiplication was significantly higher and its effect more pronounced on two early successional grass species, i.e. A. arenaria and Leymus arenarius. Here aphid multiplication resulted in a severe decrease in plant biomass; in late successional grass species, there was limited multiplication and no effect on biomass. The results of the field survey and the green-house experiment indicate that aphids show a clear preference for plants from early successional stages and, moreover, they have a greater impact on these plant species. All this supports the hypothesis of aphid herbivory as a driving factor of primary succession in coastal dunes.  相似文献   

8.
Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to anticipate the impact of global change on dune ecosystem functioning.  相似文献   

9.
Sex dimorphic plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Such differences may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. We examined the growth, reproductive and physiological responses of the sexes of the subdioecious plant Honckenya peploides to two levels each of salt spray and nutrients, which are assumed to be important selective forces in coastal environments. We found sex-related differences in H. peploides. In particular, females allocated proportionally more dry mass to reproduction and grew less and more slowly than males regardless of salt spray and nutrient conditions, which is interpreted as a trade-off between reproductive and vegetative growth. Regarding physiological response, nutrients significantly increased values of photochemical reflectance index (PRI) in females but not in males, suggesting that photochemical efficiency is more limited by nutrients in females than in males. PRI values also suggest intersexual differences in protection requirements against photoinhibition. The study did not find sex-differential responses to salt spray, which caused a decrease in reproductive effort in both sexes. The sex-related differences in relative growth rates, reproductive allocation and photosynthetic features found here may contribute to explaining habitat-related between-sex differences in performance and, therefore, the spatial segregation of the sexes observed in H. peploides.  相似文献   

10.
Plant species that persist during succession, from the colonization to the stabilization stages, face major environmental changes. Such changes are believed to have significant effects on species performance. In subarctic coastal dune systems, Leymus mollis colonizes the embryo dunes, on the upper limit of the beach. It reaches its maximum density on the foredune, but also grows on older, stabilized ridges. This paper reports on the phenotypic variations of some ecophysiological traits associated with the persistence of L. mollis on a dune system on the east coast of Hudson Bay (northern Quebec). Leymus mollis ramets tend to have a lower net carbon assimilation rate and water use efficiency, and a higher substomatal CO2 concentration on the stabilized dune than on the foredune. However, these physiological differences cannot be explained by differences in leaf morphology or nitrogen content. Under controlled conditions, ecophysiological differences observed in the field disappear, suggesting that these are not genetic but determined by environmental changes along the foredune-stabilized dune gradient. We propose that higher net carbon assimilation rate on the foredune might be related to higher sink strength in relation to the growth-stimulating effect of sand burial.  相似文献   

11.
Understanding the links between intraspecific genetic variation and patterns of diversity in associated communities has been the primary focus of community genetics or ‘genes-to-ecosystem’ research in ecology. While other ecological factors, such as the abiotic environment, have well-documented influences on communities, the relative contributions of genetic variation versus the environment to species interactions remains poorly explored. In this study, we use a common garden experiment to study a coastal dune plant community dominated by the shrub, Baccharis pilularis, which displays a morphological dimorphism in plant architecture. We found the differences in the understory plant community between erect and prostrate morphs of Baccharis to be statistically significant, but small relative to the impacts of nutrient additions (NPK and C additions), for the richness, cover, and biomass of the understory plant community. There were no significant interactions between Baccharis morphology and nutrient-addition treatments, suggesting the influence of nutrient addition was consistent between erect and prostrate morphs. Moreover, we found no difference in overall plant community composition between Baccharis morphs, while NPK additions led to shifts in understory community composition compared to unfertilized shrubs. In sum, our results indicate that nutrients are the more important factor governing understory plant community structure in a coastal dunes ecosystem followed by intraspecific variation in dominant shrub architecture. Our results address a growing call to understand the extended consequences of intraspecific variation across heterogeneous environments in terrestrial ecosystems.  相似文献   

12.
Aims Dune building processes are affected by interactions between the growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and sea spray. Research investigating how species interactions influence dune community structure and functional trait responses in high abiotic stress environments is minimal. We investigated how species interactions influence the functional trait responses of three dominant dune grasses to common abiotic stressors.Methods We performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata Fern., Uniola paniculata L. and Spartina patens Muhl.) in different interspecific combinations, using sand burial and sea spray as abiotic stressors. Sand burial was applied once at the beginning of the study. Sea spray was applied three times per week using a calibrated spray bottle. Morphological functional trait measurements (leaf elongation, maximum root length, aboveground biomass and belowground biomass) were collected at the end of the study. The experiment continued from May 2015 to August 2015.Important findings Species interactions between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata, indicating that interactions with U. paniculata could alter dune community structure. Furthermore, A. breviligulata had a negative interaction with S. patens, which decreased S. patens functional trait responses to abiotic stress. When all species occurred together, the interactions among species brought about coexistence of all three species. Our data suggest that species interactions can change traditional functional trait responses of dominant species to abiotic stress.  相似文献   

13.
We analyze the spatial patterns of natural dune cover patches and their plant richness, comparing coastal sites with different levels of human pressure in central Italy. We created a detailed land cover map of dune sites. The spatial pattern of natural dune cover types was characterized by computing a set of patch-based metrics. To quantify patch plant richness, we used 16 m2 vegetation plots, randomly distributed on coastal dune cover types. For each patch, the richness of the entire pool of species and of three guilds (i.e., typical dune, ruderal, and alien species) was considered. We compared different levels of human pressure on coastal dunes focusing on pattern metrics and floristic information by using the nonparametric Kruskal–Wallis test. In sites with high human pressure, we have observed a general simplification in the natural dune spatial pattern and a decline of plant richness but with a specific response for each cover type. Alien and ruderal species presented low richness in all patches. In coastal dunes, the harsh ecological conditions and the strong sea–inland gradient shape the distribution of human activities and control the number of ruderal species. The approach effectively describes fragmentation and biodiversity in dune ecosystems.  相似文献   

14.
Abstract. Basiphilous pioneer species are among the most endangered plant species in The Netherlands. They find most of their refuges in young coastal dune slacks, especially on the Wadden Sea islands. For the purpose of nature management it is important to know which processes control the presence of basiphilous pioneer communities, and to learn about the nature of slacks harbouring the concerning successional sequences. In a large dune slack on the Island of Terschelling, we assessed soil nutrient status and tested for nutrient limitation in four chronosequential stages: 2, 6, 37 and ca. 80 yr of age. Stage 2 harboured a basiphilous pioneer vegetation; in the stages 3 and 4 a dense vegetation of dwarf shrubs and grasses occurred. Soil organic matter and nutrient concentrations in each stage were measured in 1991. In 1992 and 1993 fertilizers were applied to all stages to detect nutrient limitation. Rates of accumulation of organic matter, nutrients and above-ground biomass were estimated. When interpreted as successional stages, the different stages represent a sequence as expected on the basis of general successional theory. There was a peak in yearly nutrient accumulation between the 6- and 37-yr old stage and a steady state after ca. 80 yr. Between the first two and the latter two stages a shift occurred from allogenic to autogenic succession which correlated with a shift in emphasis from available nutrients to light availability as limiting resources. Basiphilous pioneer species suffered only deficiency of nitrogen, probably because of their low phosphorus requirements. It is concluded that in dune slack habitats, in addition to a low nutrient availability in general, a very low phosphorus availability favours basiphilous pioneer species to species showing co-limitation of nitrogen and phosphorus as found in some grasses and dwarf shrubs. A comparison between the effects of lime addition and the effects of nitrogen and phosphorus additions suggests that, in the early stages, soil buffering increases the availability of nitrogen and inhibits the availability of phosphorus. Sod cutting is an effective technique for restoring basiphilous pioneer vegetation, when slacks are acidified only superficially and buffering-mechanisms can be reactivated. Yearly mowing and removing of standing crop may prolong the life-span of basiphilous pioneer vegetation, when soil acidification has not yet dropped below pH 6.  相似文献   

15.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   

16.
Fate ofDigitaria adscendens andEleusine indica seedlings under field conditions and their responses to salt spray, drought and nutrients were experimentally investigated in order to evaluate the possible mechanisms controlling the different distributions of the two species in coastal sand dune areas. Salt spray produced no apparent positive effect on the growth or survival of both species. Seeds of each species germinated well in the field, although 80% ofE. indica seedlings died during a summer drought and surviving seedlings neither grew nor bore fruit. The mortality ofD. adscendens seedlings due to the drought was less than 10% and the survivors mostly bore fruit by the end of the growth season. No major difference in the sublethal water saturation deficit was noticed between the two species. However,D. adscendens individuals extended their roots into the deep sandy soil to a much greater extent in water-stressed conditions than in well watered conditions, whereasE. indica showed no such behavior. Additional watering in a dune environment did not help the growth ofE. indica seedlings, but additional nutrients had a markedly stimulatory effect.D. adscendens maintained its growth and fruition with much smaller amounts of nutrients thanE. indica. Soil nitrogen content at a site whereE. indica andD. adscendens were distributed sympatrically was higher than that at a site where onlyD. adscendens was present. Based on these findings, it is proposed thatE. indica seedlings are unable to become established because of their lower resistance to summer drought and the poor nutrient conditions present in a coastal rear sand dune habitat. Dedicated to Prof. emeritus Toshiro Saeki for his fruitful career in plant ecology.  相似文献   

17.
Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second internal transcribed spacer (ITS2) sequence variation detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP). The ITS2 region was sufficiently variable within the taxa investigated to allow species to be separated on the basis of minor sequence variation. The PCR primers used in this study were effective for 12 species with three genera within the Heteroderinae (Globodera pallida, G. rostochiensis, Heterodera arenaria/avenae, H. ciceri, H. daverti, H. hordecalis, H. mani, H. schachtii, H. trifolii, Meloidogyne ardenensis, M. duytsi and M. maritima). However, pathotypes of Globodera pallida and G. rostochiensis could not be distinguished. The method was tested at two coastal dune locations in The Netherlands (one in the lime-poor dunes of the north and one in calcareous dunes of the south) to determine the population structure of cyst nematodes. At each site, cyst nematodes were associated with three plant species: two plant species on the foredune (Elymus farctus and Ammophila arenaria) and one plant species occurring further inland (Calamagrostis epigejos). Two species of cyst nematodes, H. arenaria and H. hordecalis, were found. H. arenaria associated with vigorous A. arenaria and H. hordecalis in association with degenerating A. arenaria and C. epigejos. The field survey demonstrated that in coastal dunes abiotic factors may be the important affecting the distribution of cyst nematodes.  相似文献   

18.
In an artificial Salix gordejevii Chang et Skv. plantation of the Horqin sandy land, we investigated vertical distribution (in 0–100 cm depth), biomass (FRD), fine root production (FRP), fine root length density (FRLD) and turnover of fine roots (<2 mm diameter) at three sites (dune top, midslope and bottom of dune) along leeward slopes. Meanwhile, the correlation between FRP and soil available resources was analyzed. Our results indicate that more than 65% of total fine root biomass is distributed in 0–40 cm depth, and the patterns are different at three sites. The mean monthly FRD ranges from 227 to 324 g·m?2, and they follows the order: dune top > midslope > bottom of dune. Ingrowth cores were harvested after 2, 3, 4, 5, 6 and 8 months of installation. At the first five sampling times, FRP and FRLD (0–40 cm) follows the same order with FRD along the topographical gradient, while FRP harvested after 8 months does not follow the same tendency, they are 348, 402 and 356 g·cm?2 in dune top, midslope and bottom of dune, respectively. Fine root turnover ranges from 1.04–1.92 year?1, and fine root turnover (20–40 cm) increases from dune top to bottom of dune along the topographical gradient. Correlation analysis between FRP and soil available resources indicates that only mean soil volumetric water content significantly correlates with annual FRP, which suggests that soil water content might be more crucial for shrub growth than fertility along the topographical gradient.  相似文献   

19.
古尔班通古特沙漠土壤水分与化学性质的空间分布   总被引:2,自引:0,他引:2  
区域尺度上,气象和水文状况是影响植被分布格局和土壤性状的主要因子,当然,局部的地貌特征及植被分布对土壤性质的影响也是不能忽视的。以古尔班通古特沙漠为研究对象,对其南缘至腹地约25 km的土壤水分与化学性质的空间分布及其相互关系进行研究,结果显示:水平方向上,从沙漠南缘至腹地,土壤水分在丘底呈减小趋势,尤其是距边缘10 km以外,且在距边缘6—7 km出现1个峰值。同时土壤pH值和电导率的大小以及有机碳,全氮,有效氮,全磷和有效磷含量与土壤水分的变化状况相似,在丘底呈减小趋势,而在丘坡和丘顶上均呈波动分布。这说明丘底土壤性质的空间格局受到气象和水文状况的显著影响,而丘坡和丘顶土壤性质并没有受到气象和水文状况的显著影响,这种波动分布主要由采样点的设置及植物的分布状况所引起。丘底土壤水分及化学性质均显著高于丘坡和丘顶,这说明地貌特征对土壤性质的空间分布有显著影响。垂直方向上,不同深度土层土壤性质也存在显著差异,土壤水分,pH值和电导率随着土层深度增加而增加,而土壤养分随土层深度增加而减小。相关分析结果表明:仅4、5月份的土壤含水量及年平均土壤含水量与丘底土壤化学性质显著正相关,这可能由于冬季积雪的融化导致了土壤水分在4、5月份的聚集比较明显,使土壤水分对土壤化学性质发挥作用。总之,土壤空间异质性是由气象和水文以及地貌特征共同影响的,而土壤空间异质性的变异进而影响到植被的分布,植被的分布反过来又影响土壤的空间分布,因此土壤的空间分布和植被的空间分布是相互影响,共同作用的。  相似文献   

20.
The sand dune habitats found on barrier islands and other coastal areas support a dynamic plant community while protecting areas further inland from waves and wind. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation, likely because of the interplay among plant succession, exposure, disturbance, and resource availability. However, surprisingly few long-term data are available describing dune vegetation patterns. A nine-year census of 294 plots on St. George Island, Florida suggests that the major climatic drivers of vegetation patterns vary with habitat. Community structure is correlated with the elevation, soil moisture, and percent soil ash of each 1 m2 plot. Major storms reduce species richness in all three habitats. Principle coordinate analysis suggests that changes in the plant communities through time are caused by climatic events: changes in foredune vegetation are correlated with temperature and summer precipitation, interdune vegetation with storm surge, and backdune vegetation with precipitation and storm surge. We suggest that the plant communities in foredune, interdune, and backdune habitats tend to undergo succession toward particular compositions of species, with climatic disturbances pushing the communities away from these more deterministic trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号