首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
It is still unclear whether the timing of intracoronary stem cell therapy affects the therapeutic response in patients with myocardial infarction.The natural course of healing the infarction and the presence of putative homing signals within the damaged myocardium appear to favor cell engraftment during the transendothelial passage in the early days after reperfusion.However,the adverse inflammatory environment,with its high oxidative stress,might be deleterious if cells are administered too early after reperfusion.Here we highlight several aspects of the timing of intracoronary stem cell therapy.Our results showed that transplantation of bone marrow mesenchymal stem cells at 2 4 weeks after myocardial infarction is more favorable for reduction of the scar area,inhibition of left ventricular remodeling,and recovery of heart function.Coronary injection of autologous bone marrow mesenchymal stem cells at 2 4 weeks after acute myocardial infarction is safe and does not increase the incidence of complications.  相似文献   

2.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

3.
Erythropoietin (EPO) was shown to have protective effects after myocardial infarction (MI) by neovascularization and antiapoptotic mechanisms. Beside direct receptor-dependent mechanisms, mobilization and homing of bone marrow-derived cells (BMCs) may play a pivotal role in this regard. In this study, we intended to track different subpopulations of BMCs and to assess serially myocardial perfusion changes in EPO-treated mice after MI. To allow tracking of BMCs, we used a chimeric mouse model. Therefore, mice (C57BL/6J) were sublethally irradiated, and bone marrow (BM) from green fluorescent protein transgenic mice was transplanted. Ten weeks later coronary artery ligation was performed to induce MI. EPO was injected for 3 days with a total dose of 5000 IU/kg. Subpopulations (CD31, c-kit, CXCR-4 and Sca-1) of EGFP(+) cells were studied in peripheral blood, bone marrow and hearts by flow cytometry. Myocardial perfusion was serially investigated in vivo by pinhole single-photon emission computed tomography (SPECT) at days 6 and 30 after MI. EPO-treated animals revealed an enhanced mobilization of BMCs into peripheral blood. The numbers of these cells in BM remained unchanged. Homing of all BMCs subpopulations to the ischaemic myocardium was significantly increased in EPO-treated mice. Among the investigated subpopulations, EPO predominantly affected migration of CXCR-4(+) (4.3-fold increase). Repetitively SPECT analyses revealed a reduction of perfusion defects after EPO treatment over time. Our study shows that EPO treatment after MI enhances the migration capacity of BMCs into ischaemic tissue, which may attribute to an improved perfusion and reduced size of infarction, respectively.  相似文献   

4.
Recent clinical studies have demonstrated that intracoronary infusion of autologous bone marrow cells (BMC) in conjunction with standard treatment may improve left ventricular function after an acute myocardial infarction (AMI). However, the results of these studies remain controversial, as the studies were relatively small in size and partially differed in design. We reviewed primary controlled randomized clinical studies comparing intracoronary transfer of autologous non-mobilized BMC combined with standard therapy versus standard therapy alone in patients with AMI. We identified five randomized controlled clinical trials, three of which were also placebo- and bone marrow aspiration-controlled. Non-mobilized BMC were infused into the revascularized coronary target artery 6.6 +/- 6.1 days after AMI. The mean follow- up period of 5.2 +/- 1.1 months was completed by 482 patients, 241 of which received infusion of BMC. The effect of BMC on left ventricular ejection fraction (LVEF) as a major functional parameter was evaluated. Analyzing the overall effect on the change in LVEF between baseline and follow-up value revealed a significant improvement in the BMCtreated group as compared to the control group (P = 0.04). Thus, considering the increase in LVEF during follow-up, transplantation of BMC may be a safe and beneficial procedure to support treatment of AMI. However, the functional improvement observed with this form of therapy was altogether relatively moderate and the studies were heterogeneous in design. Hence, further efforts aiming at large-scale, double-blind, randomized and placebo-controlled multi-center trials in conjunction with better definition of patients, which benefit from BMC infusion, appear to be warranted.  相似文献   

5.
骨髓基质细胞移植促进心肌梗塞后血管新生机制的研究   总被引:1,自引:0,他引:1  
Mao XB  Zeng QT  Wang X  Cao LS 《中国应用生理学杂志》2005,21(3):311-314,i0004
目的:通过研究不同时期心肌梗塞区血管生长因子的表达,探讨骨髓基质细胞移植促进心肌梗塞后血管新生的机制.方法:将急性心肌梗塞大鼠随机分为2组.实验组在梗塞后28 d,将同种异体骨髓基质细胞注射到心肌梗塞区.对照组仅注射无血清的培养液.在梗塞后的不同时期取标本动态观察梗塞区VEGF、bFGF的表达和血管新生状况.结果:骨髓基质细胞移植入梗塞区后主要分化为成纤维细胞和血管内皮细胞.实验组心肌梗塞区新生毛细血管数目较对照组明显增加(14±4.7/HPF vs 6±2.4/HPF P<0.05).对照组梗塞区VEGF和bFGF的表达在梗塞后7 d达高峰,28 d开始下降,第42 d和56 d时表达明显下降.而实验组二者的表达在心肌梗塞后第42 d和56 d明显高于对照组.结论:骨髓基质细胞通过分化为内皮细胞以及促进梗塞区VEGF和bFGF的持续高表达,对血管新生起积极作用.  相似文献   

6.
7.
8.
Thrombolytic agents are being employed clinically in increasing numbers of patients in the attempt to eliminate occlusive coronary thrombi in patients with evolving myocardial infarction. When administered by the intracoronary route, streptokinase lyses is successful in coronary thrombi in more than two-thirds of patients, but when administered intravenously is successful in only one-third. Since streptokinase is a nonselective plasminogen activator, it induces fibrinogenolysis when administered selectively or systematically with an attendant marked reduction in plasma fibrinogen levels and significant bleeding complications. In contrast, the action of tissue plasminogen activator (t-Pa) is relatively selective for fibrinolysis (as opposed to fibrinogenolysis). It induces coronary thrombolysis in at least 60% of patients when administered either into a coronary ostium or a peripheral vein without producing substantial reductions in circulating fibrinogen. Bleeding complications are modest and usually related to high administered doses and concomitant heparinization, and occur primarily at sites of vascular access. Thus, t-Pa appears to be a promising agent for thrombolytic treatment of patients with evolving acute myocardial infarction.  相似文献   

9.
Despite mounting pre-clinical and clinical evidence of the beneficial effects of cell-based therapy, optimal cell dosing and delivery approaches have not been identified. Cardiospheres are self-assembling three-dimensional (3D) microtissues formed by cardiac stem cells and supporting cell types. The ability of cardiospheres to augment cardiac function has been demonstrated in animal models of ischemic cardiomyopathy. In this study, we studied the dose dependence of the benefits of human cardiospheres, delivered via intramyocardial injection, upon cardiac function and ventricular remodelling in SCID mice with acute myocardial infarction. Four doses of cardiospheres were used: 1 × 10(4), 5 × 10(4), 1 × 10(5) and 5 × 10(5) (expressed as number of plated cardiosphere-forming cells). Acute (24 hr) cell retention rates in all groups were similar. Functional assessment and quantitative heart morphometry indicated benefit from higher cell doses (≥5 × 10(4)) in terms of ejection fraction, infarct size and capillary density. Histological analysis indicated that the dose-dependent benefit was primarily because of indirect effects of transplanted cells. The results provide scalable data on cardiosphere dosing for intramyocardial injection.  相似文献   

10.
Sphere formation has been utilized as a way to isolate multipotent stem/progenitor cells from various tissues. However, very few studies on bone marrow-derived spheres have been published and assessed their multipotentiality. In this study, multipotent marrow cell populations were isolated using a three-step method. First, after elimination of hematopoietic cells, murine marrow-derived adherent cells were cultured in plastic dishes until small cells gradually appeared and multiplied. Cells were then cultured under non-adherent conditions and formed spheres that were immunopositive for a neural precursor marker, nestin. RT-PCR analysis also revealed that the spheres were positive for nestin in addition to PPARgamma, osf2, SOX9, and myoD, which are markers of precursors of adipocytic, osteoblastic, chondrocytic, and skeletal myeloblastic lineages, respectively. Finally, spheres were dissociated into single cells and expanded in adherent cultures. Under appropriate induction conditions, the sphere-derived cells acquired the phenotypic properties in vitro of neurons, skeletal myoblasts, and beating cardiomyocytes, as well as adipocytes, osteoblasts, and chondrocytes. Next, sphere-derived cells were transplanted into murine myocardial infarction models. One month later, they had become engrafted as cardiomyocytes, and cardiac catheterization showed significant functional improvements. Thus, sphere-derived cells represent a new approach to enhance the multi-differentiation potential of murine bone marrow.  相似文献   

11.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

12.
In patients with ST-segment elevation myocardial infarction (STEMI), the time of onset of ischemia has been associated with myocardial infarction (MI) size. Myocardial blush grade (MBG) reflects myocardial response to ischemia/reperfusion injury, which may differ according to time of the day. The aim of our study was to explore the 24-hour variation in MBG and MI size in relation to outcomes in STEMI patients. A retrospective multicenter analysis of 6970 STEMI patients was performed. Time of onset of STEMI was divided into four 6-hour periods. STEMI patients have a significant 24-hour pattern in onset of symptoms, with peak onset around 09:00 hour. Ischemic time was longest and MI size, estimated by peak creatine kinase concentration, was largest in patients with STEMI onset between 00:00 and 06:00 hours. Both MBG and MI size were independently associated with mortality. Time of onset of STEMI was not independently associated with mortality when corrected for baseline and procedural factors. Interestingly, patients presenting with low MBG between 00:00 and 06:00 hours had a better prognosis compared to other groups. In conclusion, patients with symptom onset between 00:00 and 06:00 hours have longer ischemic time and consequently larger MI size. However, this does not translate into a higher mortality in this group. In addition, patients with failed reperfusion presenting in the early morning hours have better prognosis, suggesting a 24-hour pattern in myocardial protection.  相似文献   

13.
Background and Purpose: The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (BMSCs) after myocardial infarction (MI) is controversial. Our previous results suggested that hypergravity promoted the cardiomyogenic differentiation of BMSCs, and thus we postulated that ex vivo pretreatment of BMSCs using hypergravity and 5‐azacytidine (5‐Aza) would lead to cardiomyogenic differentiation and result in superior biological and functional effects on cardiac regeneration of infarcted myocardium. Methods: We used a rat MI model generated by ligation of the coronary artery. Homogeneous rat BMSCs were isolated, culture expanded, and differentiated into a cardiac lineage by adding hypergravity (2G) for 3 days and 5‐Aza (50 lmol/L, 24 h). Rats underwent BMSCs (labeled with DAPI) injection after the infarction and were randomized into five groups. Group A rats received the control medium, Group B rats received unmodified BMSCs, Group C rats received BMSCs treated with hypergravity, Group D rats received BMSCs treated with 5‐Aza, and Group E rats received BMSCs treated with 5‐Aza and hypergravity (n = 6). Results: After hypergravity and 5‐Aza treatment, BMSCs showed positive for the early muscle and cardiac markers GATA‐4, MEF‐2, and Nkx2‐5 with RT‐PCR. We also found that hypergravity could enhance the activities of MEF‐2 via promoting the nuclear export of HDAC5. The frozen section showed that the implanted BMSCs labeled with DAPI survived and angiogenesis was identified at the implantation site. In Groups B, C, D, and E rats, pre‐treated BMSCs colocalized with α‐actinin, and Group E rats showed a significantly larger increase in left ventricular function. Conclusions: The biological ex vivo cardiomyogenic differentiation of adult BMSCs with hypergravity and 5‐Aza prior to their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a rat model of the infarcted myocardium. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
We have chosen collagen, chitosan acetate, hyaluronic acid, and propolis as model biochemical compound solution to determine the influence of cell carrier mechanics on cell viability and functionality during and after transplantation. Suspending of bone marrow (BM), mononuclear (MN), and CD34+ cells into a biochemical compounds solution is an attractive tool to achieve to protect and ensure reproducible deliver. Hyperglycemic rats were randomly divided into 2 groups: to receive no cell treatment or approximately 1 × 105 of BM, MN, and CD34+ cells within the PBS or biochemical compound solution. These cells were infused into the hyperglycemic rats on day 10 and again on day 20. At each time point, the animals were anaesthetized with ether, and 200 μL of blood was drawn from the tail vein. Samples were collected to determine whether BM, MN, and CD34+ cell affected glucose content and insulin production. Our results exhibit the use of biochemical compound solution method to overcome the cell transplantation problem during and after injection of these cells into rats. These findings are supported by resulting in significantly greater insulin production and more decreased glucose content than cells injected in PBS only (P < 0.05). These effects displayed the following hierarchy: hyaluronic acid > chitosan acetate > collagen > propolis solution. Our results showed that these compounds demonstrated a capacity to encapsulate the BM, MN, and CD34+ cells. It is proven by decreasing glucose content and increasing insulin secretion by pancreatic cells. The uniqueness of our study is the improvement of current transplantation efficiency.  相似文献   

15.
Marrow-derived mesenchymal stem cells (MSCs) have been heralded as a source of great promise for the regeneration of the infarcted heart. There is no clear data indicating whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study is to address this issue. To induce MSCs to transdifferentiate into cardiomyocyte-like and endothelial-like cells, 5-azacytidine and vascular endothelial growth factor (VEGF) were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. Animals were divided into three experimental groups: I, control group; II, undifferentiated mesenchymal stem cell transplantation group; III, differentiated mesenchymal stem cell transplantation group; which respectively received peri-infarct injections of culture media, autologous undifferentiated MSCs and autologous differentiated MSCs. General pathology, immunohistochemistry, electron microscopy and echocardiography were performed in order to search for myocardial regeneration and improvement of cardiac function. In Groups II and III, implanted cells transdifferentiate into myocardial cells within 28 days post injection in a similar manner, and well-developed ultra structures formed within transplanted cells. Improvements in left ventricular function and reductions in infarcted area were observed in both cell-transplanted groups to the same degree. Vascular density was similar in Groups II and III and significantly higher in these groups compared with the control group. There is no need for prior differentiation induction of marrow-derived MSCs before transplantation and peri-infarct implantation of MSCs can efficiently regenerate the infarcted myocardium and improve cardiac function.  相似文献   

16.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

17.
Expansion and/or maintenance of hematopoietic stem cell (HSC) potential following in vitro culture remains a major obstacle in stem cell biology and bone marrow (BM) transplantation. Several studies suggest that culture of mammalian cells in microgravity (micro-g) may reduce proliferation and differentiation of these cells. We investigated the application of these findings to the field of stem cell biology in the hopes of expanding HSC with minimal loss of hematopoietic function. To this end, BM CD34+ cells were cultured for 4-6 d in rotating wall vessels for simulation of micro-g, and assessed for expansion, cell cycle activation, apoptosis, and hematopoietic potential. While CD34+ cells cultured in normal gravity (1-g) proliferated up to threefold by day 4-6, cells cultured in micro-g did not increase in number. As a possible explanation for this, cells cultured in simulated micro-g were found to exit G0/G1 phase of cell cycle at a slower rate than 1-g controls. When assayed for primitive hematopoietic potential in secondary conventional 1-g long-term cultures, cells from initial micro-g cultures produced greater numbers of cells and progenitors, and for a longer period of time, than cultures initiated with 1-g control cells. Similar low levels of apoptosis and adhesion molecule phenotype in micro-g and 1-g-cultured cells suggested similar growth patterns in the two settings. These data begin to elucidate the effects of micro-g on proliferation of human hematopoietic cells and may be potentially beneficial to the fields of stem cell biology and somatic gene therapy.  相似文献   

18.
Autologous hematopoietic stem cell transplantation (HSCT) has recently been performed as a novel strategy to treat patients with new-onset type 1 diabetes (T1D). However, the mechanism of autologous HSCT-induced remission of diabetes remains unknown. In order to help clarify the mechanism of remission-induction following autologous HSCT in patients with T1D, mice treated with multiple low doses of streptozotocin to induce diabetes were used as both donors (n = 20) and recipients (n = 20). Compared to streptozocin-treated mice not receiving transplantation, syngeneic bone marrow transplantation (syn-BMT) from a streptozocin-treated diabetic donor, if applied during new-onset T1D (day 10 after diabetes onset), can reverse hyperglycemia without relapse (P < 0.001), maintain normal blood insulin levels (P < 0.001), and preserve islet cell mass. Compared to diabetic mice not undergoing HSCT, syn-BMT, results in restoration of Tregs in spleens (P < 0.01), increased Foxp3 mRNA expression (P < 0.01) and increased Foxp3 protein expression (P < 0.05). This diabetic-remission-inducing effect occurred in mice receiving bone marrow from either streptozocin-treated diabetic or non-diabetic normal donors. We conclude that autologous HSCT remission of diabetes is more than transient immune suppression, and is capable of prolonged remission-induction via regeneration of CD4+CD25+FoxP3+ Tregs.  相似文献   

19.
Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal‐cell derived factor‐1α (SDF‐1α) facilitates proliferation and migration of endogenous progenitor cells into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF‐1α‐infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF‐1 infected EPCs compared to medium control. Intracoronary application of cells did not lead to significant differences compared to medium injected control hearts. Histology showed a significantly elevated rate of apoptotic cells and augmented proliferation after transplantation of EPCs and EPCs + SDF‐1α in infarcted myocardium. In addition, a significant increased density of CD31+ vessel structures, a lower collagen content and higher numbers of inflammatory cells after transplantation of SDF‐1 transgenic cells were detectable. Intramyocardial application of lentiviral‐infected EPCs is associated with a significant improvement of myocardial function after infarction, in contrast to an intracoronary application. Histological results revealed a significant augmentation of neovascularization, lower collagen content, higher numbers of inflammatory cells and remarkable alterations of apoptotic/proliferative processes in infarcted areas after cell transplantation.  相似文献   

20.
The purpose of this study is to establish a murine embryonic stem cell (mESC) line for isolation of functional ventricular cardiomyocytes (VCMs) and then to characterize the derived VCMs. By crossing the myosin light chain 2v (Mlc2v)-Cre mouse line with the reporter strain Rosa26-yellow fluorescent protein (YFP), we generated mESC lines from these double transgenic mice, in which Cre-mediated removal of a stop sequence results in the expression of YFP under the control of the ubiquitously active Rosa26 promoter specifically in the VCM. After induction of differentiation via embryoid body (EB) formation, contracting YFP+ cells were detected within EBs and isolated by fluorescence-activated cell sorting. N-cadherin, the cadherin expressed in cardiomyocytes, and the major cardiac connexin (Cx) isoform, Cx43, were detected in the respective adherens and gap junctions in these VCMs. Using current clamp recordings we demonstrated that mESC-derived VCMs exhibited action potential characteristics comparable to those of neonatal mouse VCMs. Real-time intracellular calcium [Ca2+]i imaging showed rhythmic intracellular calcium transients in these VCMs. The amplitude and frequency of calcium transients were increased by isoproterenol stimulation, suggesting the existence of functional β-adrenergic signaling. Moreover, [Ca2+]i oscillations responded to increasing frequencies of external electrical stimulation, indicating that VCMs have functional excitation-contraction coupling, a key factor for the ultimate cardiac contractile performance. The present study makes possible the production of homogeneous and functional VCMs for basic research as well as for cardiac repair and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号