首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of Leishmania donovani cyclin 1 (LdCyc1) mRNA during the cell cycle of promastigotes is S-phase specific. Here, we show that the LdCyc1 protein is periodically expressed and the activity of its associated kinase varies during the cell cycle in line with its expression pattern. In addition, we have shown that LdCRK3, homologous to CRK3 from L. mexicana, is the cognate Cdk partner of LdCyc1 and that the activity of the complex is inhibited specifically by heat stable factor(s) from the parasite.  相似文献   

2.
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.  相似文献   

3.
The gene PRT1 of Arabidopsis, encoding a 45-kD protein with two RING finger domains, is essential for the degradation of F-dihydrofolate reductase, a model substrate of the N-end rule pathway of protein degradation. We have determined the function of PRT1 by expression in yeast (Saccharomyces cerevisiae). PRT1 can act as a ubiquitin protein ligase in the heterologous host. The identified substrates of PRT1 have an aromatic residue at their amino-terminus, indicating that PRT1 mediates degradation of N-end rule substrates with aromatic termini but not of those with aliphatic or basic amino-termini. Expression of model substrates in mutant and wild-type plants confirmed this substrate specificity. A ligase activity exclusively devoted to aromatic amino-termini of the N-end rule pathway is apparently unique to plants. The results presented also imply that other known substrates of the plant N-end rule pathway are ubiquitylated by one or more different ubiquitin protein ligases.  相似文献   

4.
Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. Here we report the structure of a GNAT in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.  相似文献   

5.
β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer''s disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition.  相似文献   

6.
The recent discovery that the RING-finger domain is involved in mediating ubiquitin transfer from ubiquitin-conjugating enzymes to substrates have highlighted the importance of protein degradation through the ubiquitin-proteasome pathway in the regulation of different cellular processes. Two RING-finger-containing proteins, the promyelocytic leukemia protein (PML) from mammals and the constitutive photomorphogenic protein (COP1) from plants, show conspicuous similarities in their cellular distribution, dynamics and structure, indicating that they share a related function. Comparison of these two proteins suggests that they are involved in regulating the targeting of nuclear proteins to specific nuclear compartments for degradation through the ubiquitin-proteasome pathway.  相似文献   

7.
Campylobacter jejuni is one of the major causes of human diarrhea throughout the world. Attachment to host cells and extracellular matrix proteins is considered to be an essential primary event in the pathogenesis of enteritis. Outer membrane proteins of three C. jejuni strains, one of which was aflagellate, were investigated for their contribution to the process of adhesion to INT 407 cell membranes and the extracellular matrix protein fibronectin. Using a ligand-binding immunoblotting assay the flagellin, the major outer membrane protein and a 59-kDa protein were detected to be involved in adhesion to both substrates. The MOMP was able to inhibit the attachment of the bacteria to INT 407 cell membranes partly, when the protein was isolated under native conditions. However, it was totally lost when the protein was isolated in the presence of SDS. The 59-kDa protein of one strain was identified by N-terminal sequencing, and regarding the first 14 amino acids it was found to be identical to the 37-kDa CadF protein just recently described as fibronectin-binding protein of C. jejuni. Especially for the aflagellate strain this protein may be of special importance for adhesion of the bacteria to different substrates.  相似文献   

8.
9.
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.  相似文献   

10.
Small heat shock proteins (sHsps) are molecular chaperones employed to interact with a diverse range of substrates as the first line of defense against cellular protein aggregation. The N-terminal region (NTR) is implicated in defining features of sHsps; notably in their ability to form dynamic and polydisperse oligomers, and chaperone activity. The physiological relevance of oligomerization and chemical-scale mode(s) of chaperone function remain undefined. We present novel chemical tools to investigate chaperone activity and substrate specificity of human HspB1 (B1NTR), through isolation of B1NTR and development of peptide-conjugated gold nanoparticles (AuNPs). We demonstrate that B1NTR exhibits chaperone capacity for some substrates, determined by anti-aggregation assays and size-exclusion chromatography. The importance of protein dynamics and multivalency on chaperone capacity was investigated using B1NTR-conjugated AuNPs, which exhibit concentration-dependent chaperone activity for some substrates. Our results implicate sHsp NTRs in chaperone activity, and demonstrate the therapeutic potential of sHsp-AuNPs in rescuing aberrant protein aggregation.  相似文献   

11.
The mechanism by which different mitogen activated protein kinases (MAPKs) distinguish between different substrates is poorly understood. For example, p38 and SAPK4 are two closely related p38 MAPKs that both phosphorylate ATF2 and MBP. However, p38 phosphorylates MAPKAPK-2 and -3, whereas SAPK4 does not. In this study, we have used mutagenesis to determine the regions of p38 required for substrate selection. Alanine scanning mutagenesis identified one region of p38 that was required for its ability to phosphorylate MAPKAPK-2 and -3, but that did not significantly affect its binding to these substrates. Chimeras of p38 and SAPK4 identified a second region of p38 that affected the ability of p38 to both bind and phosphorylate MAPKAPK-2 and -3. Hence, we show for the first time that MAPKs contain two distinct regions for recognizing and phosphorylating protein substrates.  相似文献   

12.
13.
Mining of caspase-7 substrates using a degradomic approach   总被引:1,自引:0,他引:1  
Caspases play critical roles in the execution of apoptosis. Caspase-3 and caspase-7 are closely related in sequence as well as in substrate specificity. The two caspases have overlapping substrate specificities with special preference for the DEVD motif. However, they are targeted to different subcellular locations during apoptosis, implying the existence of substrates specific for one or other caspase. To identify new caspase-7 substrates, we digested cell lysates obtained from the caspase-3-deficient MCF-7 cell line with purified recombinant caspase-7, and analyzed spots that disappeared or decreased by 2-DE (we refer to this as the caspase-7 degradome). Several proteins with various cellular functions underwent caspase-7- dependent proteolysis. The substrates of capase-7 identified by the degradomic approach were rather different from those of caspase-3 (Proteomics, 4, 3429-3435, 2004). Among the candidate substrates, we confirmed that Valosin-containing protein (VCP) was cleaved by both capspase-7 and caspase-3 in vitro and during apoptosis. Cleavage occurred at both DELD(307) and DELD(580). The degradomic study yielded several candidate caspase-7 substrates and their further analysis should provide valuables clues to the functions of caspase-7 during apoptosis.  相似文献   

14.
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex.  相似文献   

15.
We report the use of a proteomic strategy to identify hitherto unknown substrates for mammalian protein l-isoaspartate O-methyltransferase. This methyltransferase initiates the repair of isoaspartyl residues in aged or stress-damaged proteins in vivo. Tissues from mice lacking the methyltransferase (Pcmt1(-/-)) accumulate more isoaspartyl residues than their wild-type littermates, with the most "damaged" residues arising in the brain. To identify the proteins containing these residues, brain homogenates from Pcmt1(-/-) mice were methylated by exogenous repair enzyme and the radiolabeled methyl donor S-adenosyl-[methyl-(3)H]methionine. Methylated proteins in the homogenates were resolved by both one-dimensional and two-dimensional electrophoresis, and methyltransferase substrates were identified by their increased radiolabeling when isolated from Pcmt1(-/-) animals compared with Pcmt1(+/+) littermates. Mass spectrometric analyses of these isolated brain proteins reveal for the first time that microtubule-associated protein-2, calreticulin, clathrin light chains a and b, ubiquitin carboxyl-terminal hydrolase L1, phosphatidylethanolamine-binding protein, stathmin, beta-synuclein, and alpha-synuclein, are all substrates for the l-isoaspartate methyltransferase in vivo. Our methodology for methyltransferase substrate identification was further supplemented by demonstrating that one of these methyltransferase targets, microtubule-associated protein-2, could be radiolabeled within Pcmt1(-/-) brain extracts using radioactive methyl donor and exogenous methyltransferase enzyme and then specifically immunoprecipitated with microtubule-associated protein-2 antibodies to recover co-localized protein with radioactivity. We comment on the functional significance of accumulation of relatively high levels of isoaspartate within these methyltransferase targets in the context of the histological and phenotypical changes associated with the methyltransferase knock-out mice.  相似文献   

16.
PknH Ser/Thr protein kinase of Mycobacterium tuberculosis controls the expression of a variety of cell wall related enzymes and regulates the in vivo growth in mice. Therefore, we predicted that the PknH kinase could phosphorylate several substrates controlling different metabolic and physiological pathways. Using a bioinformatic approach, we identified 40 potential substrates. Two substrates were shown to be phosphorylated by recombinant PknH kinase in vitro. Point mutation studies verified that substrates are phosphorylated at the in silico-predicted sites. Kinetic studies revealed a similar relative-phosphorylation rate (V(max)) of PknH towards two new substrates and the only previously known substrate, EmbR. Unlike the EmbR protein, the Rv0681 and DacB1 proteins do not contain an FHA domain and are possible participants of new signaling pathways mediated by the PknH kinase in M. tuberculosis.  相似文献   

17.
Emanuele MJ  Elia AE  Xu Q  Thoma CR  Izhar L  Leng Y  Guo A  Chen YN  Rush J  Hsu PW  Yen HC  Elledge SJ 《Cell》2011,147(2):459-474
Cullin-RING ligases (CRLs) represent the largest E3 ubiquitin ligase family in eukaryotes, and the identification of their substrates is critical to understanding regulation of the proteome. Using genetic and pharmacologic Cullin inactivation coupled with genetic (GPS) and proteomic (QUAINT) assays, we have identified hundreds of proteins whose stabilities or ubiquitylation status are regulated by CRLs. Together, these approaches yielded many known CRL substrates as well as a multitude of previously unknown putative substrates. We demonstrate that one substrate, NUSAP1, is an SCF(Cyclin F) substrate during S and G2 phases of the cell cycle and is also degraded in response to DNA damage. This collection of regulated substrates is highly enriched for nodes in protein interaction networks, representing critical connections between regulatory pathways. This demonstrates the broad role of CRL ubiquitylation in all aspects of cellular biology and provides a set of proteins likely to be key indicators of cellular physiology.  相似文献   

18.
Proteolytic modification of components of the extracellular milieu by metalloproteinases plays important roles in the regulation of multiple cellular and physiological processes and pathological conditions. ADAMTS1 is a secreted enzyme of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases, which is related to angiogenesis and inflammation processes. Here, we describe a proteomic screening for putative ADAMTS1 substrates by analyzing the protein profiles obtained from cultures of transfected cells overexpressing the protease as compared to parental cells. Conditioned medium proteins of cultures of the two cell lines have been quantitatively compared by DIGE. Proteins showing differential levels have been identified by MS techniques leading to the finding of five potential new substrates of ADAMTS1: the basement membrane proteins nidogen-1 and -2, the desmosomal protein desmocollin-3, and the extracellular glycoproteins dystroglycan 1 and Mac-2-binding protein. Nidogen-1 and -2 have been further validated as substrates by immunochemical analysis. Our results demonstrate the utility of the DIGE proteomic technique for the discovery of specific substrates of matrix proteases.  相似文献   

19.
20.
Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号