首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In yeast, the macromolecular complex Set1/COMPASS is capable of methylating H3K4, a posttranslational modification associated with actively transcribed genes. There is only one Set1 in yeast; yet in mammalian cells there are multiple H3K4 methylases, including Set1A/B, forming human COMPASS complexes, and MLL1-4, forming human COMPASS-like complexes. We have shown that Wdr82, which associates with chromatin in a histone H2B ubiquitination-dependent manner, is a specific component of Set1 complexes but not that of MLL1-4 complexes. RNA interference-mediated knockdown of Wdr82 results in a reduction in the H3K4 trimethylation levels, although these cells still possess active MLL complexes. Comprehensive in vitro enzymatic studies with Set1 and MLL complexes demonstrated that the Set1 complex is a more robust H3K4 trimethylase in vitro than the MLL complexes. Given our in vivo and in vitro observations, it appears that the human Set1 complex plays a more widespread role in H3K4 trimethylation than do the MLL complexes in mammalian cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Post-translational histone modifications, such as acetylation, phosphorylation, ubiquitination, and methylation, have been correlated with regulation of gene expression. In Saccharomyces cerevisiae, Set1 has been identified as the sole histone methyltransferase required for histone H3 lysine 4 (Lys(4)) methylation. Yeast cells that do not express Set1 have several apparent phenotypes, including slow growth and defects in telomere, HML, and rDNA silencing. However, the mechanism by which the Set1 methyltransferase mediates differential histone H3 methylation (mono-, di-, and tri-) is still not understood, and the involvement of domains or regions in Set1 contributing to H3 Lys(4) methylation has not been well characterized. In this study, the N terminus of Set1 was shown to be important for global and gene specific histone H3 trimethylation. We show that Set1 trimethyl-defective mutants can rescue a set1Delta slow growth defect. In contrast, Set1 trimethyl mutants were defective in telomere, rDNA, HML, and HMR silencing. Taken together, these data suggest that histone H3 Lys(4) trimethylation is required for proper silencing, while mono- and/or dimethylation is sufficient for cell growth.  相似文献   

16.
ObjectivesAPOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms.MethodsDLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation.ResultsDLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1.ConclusionLncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.  相似文献   

17.
18.
19.
Highlights? H2B ubiquitylation directly stimulates H3K4 methylation by the yeast Set1 complex ? Swd2 is not directly required for the H3K4 methylation activity of the yeast Set1 complex ? The Set1 n-SET domain plays a critical role in H2Bub-dependent H3K4 methylation ? Spp1 is conditionally involved in n-SET- and H2Bub-dependent H3K4 methylation  相似文献   

20.
The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27   总被引:1,自引:0,他引:1  
CHD3 proteins are ATP-dependent chromatin remodelers that contribute to repression of developmentally regulated genes in both animal and plant systems. In animals, this repression has been linked to a multiple subunit complex, Mi-2/NuRD, whose constituents include a CHD3 protein, a histone deacetylase, and a methyl-CpG-binding domain protein. In Arabidopsis, PICKLE (PKL) codes for a CHD3 protein that acts during germination to repress expression of seed-associated genes. Repression of seed-associated traits is promoted in pkl seedlings by the plant growth regulator gibberellin (GA). We undertook a microarray analysis to determine how PKL and GA act to promote the transition from seed to seedling. We found that PKL and GA act in separate pathways to repress expression of seed-specific genes. Comparison of genomic datasets revealed that PKL-dependent genes are enriched for trimethylation of histone H3 lysine 27 (H3K27me3), a repressive epigenetic mark. Chromatin immunoprecipitation studies demonstrate that PKL promotes H3K27me3 in both germinating seedlings and in adult plants but do not identify a connection between PKL-dependent expression and acetylation levels. Taken together, our analyses illuminate a new pathway by which CHD3 remodelers contribute to repression in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号