首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferring the historical context of ecological diversification is an important step in understanding the way that population-level processes result in a diversity of species and interactions in communities. We performed a phylogeographic analysis of mitochondrial DNA haplotypes from the pollinating seed parasite Greya politella (Lepidoptera: Prodoxidae) in order to determine the degree to which populations were structured according to geographical location and host-plant association. Ninety-eight individuals were sampled from 29 locations ranging from southern California to western Idaho. Restriction-site variation in 87 individuals (27 populations) was screened by digestion with 11 endonucleases, followed by Southern blotting; 38 restriction-site positions were mapped by double digests. Haplotypes were further defined by generating fragments 251 bases in length via PCR, screening them for sequence variation using denaturing gel gradient electrophoresis (DGGE), and sequencing the resulting variants. Parsimony analysis of the resulting 12 restriction-site and 15 sequence haplotypes indicated strong geographical structuring of populations: (i) most populations were monomorphic for haplotype; (ii) haplotypes from California and the Pacific Northwest (Oregon, Washington and Idaho) formed robust monophyletic groups. Population structure was significant both within and between the two regions, as reflected by N ST. Patterns of host-plant association and haplotype phylogeny suggest that populations have recently undergone host-plant shifts in many different parts of the species range, although the direction and number of host shifts cannot be determined at the present level of sampling resolution.  相似文献   

2.
3.
Inferences regarding hybridization rely on genetic markers to differentiate parental taxa from one another. Intersimple sequence repeat (ISSR) markers are based on single-primer PCR reactions where the primer sequence is derived from di- and trinucleotide repeats. These markers have successfully been used to assay genetic variability among cultivated plants, but have not yet been tested in natural populations. We used genetic markers generated from eight ISSR primers to examine patterns of hybridization and purported examples of hybrid speciation in Penstemon (Scrophulariaceae) in a hybrid complex involving P. centranthifolius , P. grinnellii , P. spectabilis and P. clevelandii . This hybrid complex has previously been studied using three molecular data sets (allozymes, and restriction-site variation of nuclear rDNA and chloroplast DNA). These studies revealed patterns of introgression involving P. centranthifolius , but were unsuccessful in determining whether gene flow occurs among the other species, and support for hypotheses of diploid hybrid speciation was also lacking. In this study, we were able to fingerprint each DNA accession sampled with one to three ISSR primers and most accessions could be identified with a single primer. We found population- and species-specific markers for each taxon surveyed. Our results: (i) do not support the hybrid origin of P. spectabilis ; (ii) do support the hypothesis that P. clevelandii is a diploid hybrid species derived from P. centranthifolius and P. spectabilis ; and (iii) demonstrate that pollen-mediated gene flow via hummingbird vectors is prevalent in the hybrid complex.  相似文献   

4.
The details of mitochondrial DNA (mtDNA) phylogenetic structure of the northern grasshopper mouse Onychomys leucogaster were examined using populations from a postulated area of endemism that includes three arid regions (Colorado Plateaus, Interior Plains, and Wyoming Basins) in western North America. Fifteen tetra- and heptanucleotide restriction enzymes were used to assay restriction-site variation in a 2150-bp PCR-amplified fragment of mtDNA representing the ND2 and part of the COI gene regions. A total of 18 mtDNA haplotypes were detected. Although overall genetic divergence among these haplotypes was low (average = 1.1%), phylogeographic structuring was apparent. Notably, a clear phylogenetic split separated one group of haplotypes restricted to the Wyoming Basins from all others. This phylogenetic split was further corroborated by examination of nucleotide sequence variation from a 270-bp stretch of the mtDNA cytochrome b gene. Overall geographic and phylogenetic patterns suggest a complex history of geographic structuring and subsequent mixing of populations of grasshopper mice throughout the late Pleistocene. These patterns of variation are evaluated relative to alternative hypotheses about biotic responses to Quaternary climatic oscillations in western North American arid regions.  相似文献   

5.
Chloroplast DNA evolves slowly in the palm family (Arecaceae)   总被引:10,自引:0,他引:10  
A survey of cpDNA restriction-site variation for 22 species representing five of the six subfamilies of the palm family was conducted. Phylogenetic reconstructions based on the restriction-site data are in general agreement with conventional analyses based on morphological characters. Base-substitution estimates, derived from the restriction-site data, indicate a potential 5-13-fold decrease in substitution rates within the palms relative to rate estimates for annual plant taxa. Approximately 1,000 bp of the rbcL gene (ribulose-1,5-bisphosphate carboxylase, large subunit) were sequenced from species representing two subfamilies of the palms. The complete DNA sequence data are in accord with the restriction-site data and indicate a total rate of nucleotide substitution that is about eightfold lower than that observed for annual plants.  相似文献   

6.
Selected populations of Sceloporus grammicus from central Mexico were karyotyped and screened for variability at the protein, ribosomal-DNA, and mitochondrial-DNA levels. Molecular markers were used to construct phylogenies of the chromosome races, which were then qualitatively evaluated for congruence with each other and with the original chromosomal phytogeny proposed by Hall (1973). Between-cytotype protein divergence generally was low, and few allozyme markers were fixed between cytotypes. Hence, these data were combined with the rDNA restriction-site data for phylogeny reconstruction. This combined nuclear data set provided a phylogenetic hypothesis that, with one exception, is reasonably congruent with that based on standard karyotypes. Similar results were obtained from mtDNA restriction-site data, although there are some discrepancies, and trees based on both DNA data sets are complicated by evidence for historical and/or ongoing hybridization. An unexpectedly rapid rate of rDNA divergence is demonstrated relative to the degree of allozyme divergence, suggesting that restriction-site variation in rDNA has systematic utility at lower taxonomic levels.  相似文献   

7.
Melica (Poaceae) consist of about 92 species distributed across temperate regions of the world. Within section Dalycum, Melica ciliata sensu lato forms a taxonomic complex of several species and subspecies with clinal morphological variation causing conflicting identifications. To resolve taxonomic confusion, we used three complementary approaches, through molecular, morphological, and phytoecological analyses. The double-digest restriction-associated DNA markers significantly support the monophyly of three taxa: (i) the Mediterranean Melica magnolii, (ii) the Eurasian Melica transsilvanica subsp. transsilvanica, and (iii) the west-European M. ciliata subsp. glauca. This differentiation is corroborated by the analysis of 22 morphometric variables. Furthermore, phytoecological analysis of 221 floristic inventories revealed habitat distinctions among these taxa. Our approach of integrative taxonomy argues for a specific distinction for these three taxa, and we include a key to separate these forms. These new molecular data on the section Dalycum, subsection Ciliatae, call for further phylogenetic analyses including samples of M. ciliata subsp. ciliata and other East-Mediterranean and South African taxa.  相似文献   

8.
Chloroplast DNA (cpDNA) sequence variation is currently the most widely used tool for the inference of phylogenetic relationships among plants at all taxonomic levels. Generally, noncoding regions tend to evolve faster than coding sequences and have recently been applied to the study of phylogenetic relationships among closely related taxa. An implicit assumption of many of these studies is that intraspecific cpDNA variation is either absent or low and therefore will not interfere with the reconstruction of interspecific relationships. A survey of cpDNA sequence variation in the common alpine plant species Draba aizoides L. was undertaken to assess levels of intraspecific cpDNA sequence variation. These levels were compared to levels of interspecific sequence divergence between D. aizoides and related alpine Draba species. Intraspecific cpDNA sequence divergence was extensive in D. aizoides, and intraspecific differences were often larger than interspecific differences. cpDNA haplotype relationships were explored using a maximum parsimony approach and minimum-spanning networks. Results from both methods were largely congruent but comparisons provided interesting insights into the presumed evolutionary history of cpDNA haplotypes. A combined effect of cpDNA introgression and complex lineage sorting was inferred to explain the pattern of cpDNA variation found in D. aizoides. Our results suggest that intraspecific cpDNA variation can be extensive and that intraspecific variation needs to be taken into account when inferring phylogenetic relationships among closely related taxa.  相似文献   

9.
Scrophulariaceae is one of the families that has been divided extensively due to the results of DNA sequence studies. One of its segregates is a vastly enlarged Plantaginaceae. In a phylogenetic study of 47 members of Plantaginaceae and seven outgroups based on 3561 aligned characters from four DNA regions (the nuclear ribosomal ITS region and the plastid trnL-F, rps16 intron, and matK-trnK intron regions), the relationships within this clade were analyzed. The results from parsimony and Bayesian analyses support the removal of the Lindernieae from Gratioleae to a position outside Plantaginaceae. A group of mainly New World genera is paraphyletic with respect to a clade of Old World genera. Among the New World taxa, those offering oil as a pollinator reward cluster together. Ourisia is sister to this clade. Gratioleae consist of Gratiola, Otacanthus, Bacopa, Stemodia, Scoparia, and Mecardonia. Cheloneae plus Russelia and Tetranema together constitute the sister group to a clade predominantly composed of Old World taxa. Among the Old World clade, Ellisiophyllum and Lafuentea have been analyzed for the first time in a molecular phylogenetic analysis. The former genus is sister to Sibthorpia and the latter is surprisingly the sister to Antirrhineae.  相似文献   

10.
One of the major issues in phylogenetic analysis is that gene genealogies from different gene regions may not reflect the true species tree or history of speciation. This has led to considerable debate about whether concatenation of loci is the best approach for phylogenetic analysis. The application of Next‐generation sequencing techniques such as RAD‐seq generates thousands of relatively short sequence reads from across the genomes of the sampled taxa. These data sets are typically concatenated for phylogenetic analysis leading to data sets that contain millions of base pairs per taxon. The influence of gene region conflict among so many loci in determining the phylogenetic relationships among taxa is unclear. We simulated RAD‐seq data by sampling 100 and 500 base pairs from alignments of over 6000 coding regions that each produce one of three highly supported alternative phylogenies of seven species of Drosophila. We conducted phylogenetic analyses on different sets of these regions to vary the sampling of loci with alternative gene trees to examine the effect on detecting the species tree. Irrespective of sequence length sampled per region and which subset of regions was used, phylogenetic analyses of the concatenated data always recovered the species tree. The results suggest that concatenated alignments of Next‐generation data that consist of many short sequences are robust to gene tree/species tree conflict when the goal is to determine the phylogenetic relationships among taxa.  相似文献   

11.
Aim This study examines the hypothesis that the biogeographic history of a species is reflected in the distribution of molecular genetic diversity and the phylogenies of extant populations. Location Populations of arctic-alpine ground beetle Amara alpina were analysed from Beringia (Alaska and northernmost British Columbia), the Hudson Bay region, the northern Appalachian Mountains, and the central Rocky Mountains of North America. Methods Mitochondrial restriction site variation of specimens from twenty-two populations were assayed by using radioactively labelled mtDNA to probe Southern membranes containing restriction enzyme digested total DNA. Restriction sites were mapped and genetic distances were calculated by pairwise comparison of presence and absence of restriction sites. Genetic distances were used in a molecular analysis of variance and to construct a minimal spanning tree. Parsimony methods were used to investigate the phylogenetic relationships between the haplotypes. These results were compared to an existing model for postglacial dispersal based on fossil and modern occurrences of arctic-alpine beetles. Results Among the twenty-two populations, fifteen haplotypes were detected. Genetic variation within each of the four regions corresponded to that expected from the palaeontologically based model. Beringian populations were the most genetically diverse. In contrast, no restriction site variation was observed in populations from the Hudson Bay region. Intermediate amounts of variation were observed in alpine populations of the Rocky and Appalachian Mountains. Maximum parsimony and cluster analysis provide evidence that at least two ancestral haplotypes existed in the Southern refugium from which the Rocky and the Appalachian Mountains populations were founded. Main conclusions The genetic results are generally consistent with the palaeontologically based model. The diversity of Beringian populations is consistent with this region having been continuously inhabited by Amara alpina throughout the Pleistocene. The Hudson Bay region was not deglaciated until about 6000 years, and its populations have no restriction site variation. The molecular genetic data support the interpretation that the Hudson Bay region was colonized from Beringia based on the occurrence of the same haplotype in both regions.  相似文献   

12.
We have constructed restriction-site maps of the mtDNAs in 13 species and one subspecies of the Drosophila obscura group. The traditional division of this group into two subgroups (affinis and obscura) does not correspond to the phylogeny of the group, which shows two well- defined clusters (the Nearctic affinis and pseudoobscura subgroups) plus a very heterogeneous set of anciently diverged species (the Palearctic obscura subgroup). The mtDNA of Drosophila exhibits a tendency to evolve toward high A+T values. This leads to a "saturation" effect that (1) begets an apparent decrease in the rate of evolution as the time since the divergence of taxa increases and (2) reduces the value that mtDNA restriction analysis has for the phylogenetic reconstruction of Drosophila species that are not closely related.   相似文献   

13.
Simplified DNA sequence acquisition has provided many new data sets that are useful for phylogenetic reconstruction, including single- and multiple-copy nuclear and organellar genes. Although transcribed regions receive much attention, nontranscribed regions have recently been added to the repertoire of sequences suitable for phylogenetic studies, especially for closely related taxa. We evaluated the efficacy of a small portion of the histone repeat for phylogenetic reconstruction among Drosophila species. Histone repeats in invertebrates offer distinct advantages similar to those of widely used ribosomal repeats. First, the units are tandemly repeated and undergo concerted evolution. Second, histone repeats include both highly conserved coding and variable intergenic regions. This composition facilitates application of "universal" primers spanning potentially informative sites. We examined a small region of the histone repeat, including the intergenic spacer segments of coding regions from the divergently transcribed H2A and H2B histone genes. The spacer (about 230 bp) exists as a mosaic with highly conserved functional motifs interspersed with rapidly diverging regions; the former aid in alignment of the spacer. There are no ambiguities in alignment of coding regions. Coding and noncoding regions were analyzed together and separately for phylogenetic information. Parsimony, distance, and maximum-likelihood methods successfully retrieve the corroborated phylogeny for the taxa examined. This study demonstrates the resolving power of a small histone region which may now be added to the growing collection of phylogenetically useful DNA sequences.  相似文献   

14.
We surveyed exemplars from all 12 infrageneric taxa ofRibes (Grossulariaceae) for restriction site variation in two cpDNA regions, fromrbcL toaccD and fromrpoC1 torpoC2, in order to develop an explicit phylogenetic hypothesis and to assess the validity of infrageneric classifications. Maximum parsimony analysis resolves sect.Ribes (red currants), sect.Berisia (European alpine currants), sect.Symphocalyx (golden currants), sect.Grossularia plus sect.Grossularioides (true gooseberries and spiny currants), andHesperia, Lobbia, and probably sect.Robsonia (west North American gooseberries) as well-supported monophyletic groups. The clade of sectionsGrossularioides andGrossularia is unexpected, and suggests that subgenusGrossularia is not monophyletic. Alternatively, sect.Grossularioides may have acquired its cpDNA via hybridization and introgression. SectionsCoreosma (black currants) andHeritiera (dwarf currants) are apparently non monophyletic. Relationships among the well-supported lineages and the other sampled taxa remain unresolved. Maximum likelihood analysis is consistent with the parsimony results.  相似文献   

15.
广义青篱竹属(Arundinaria)核糖体DNA ITS序列及亲缘关系研究   总被引:8,自引:0,他引:8  
利用PCR扩增产物直接测序的方法分析广义青篱竹属(Arundinaria)中有关争议类群的代表种或模式种(毛竹为外类群)等18种竹种的核糖体DNA内转录间隔区(Internal Transcribed Spacers,ITS)序列。通过最简约性分析产生的ITS系统发育树表明,供试竹种形成一个自然的单系类群,这说明广义青篱竹属中这些不同的类群归属青篱竹属是合理的。17种竹种可聚为2大分支:其中斑苦竹(A,oleosa)、仙居苦竹(A.hsienchuensis)、茶秆竹(A.amabilis)、长叶苦竹(A.chino)、苦竹(A.amara)、宜兴苦竹(A.yixingensis)、菲白竹(A.fortunei)、翠竹(A.pygmaea)为一个分支;而大明竹(A.graminea)、巴山木竹(A.fargesii)、冷箭竹(A.faberi)、凤竹(A.hupehense)、鼓节矢竹(Pseudosasa japonica cv.Tsutsumiana)、矢竹(Pseudosasa japonica)、短穗竹(Brachystachyum densiflorum)、肿节竹(A.oedogonata)、少穗竹(A.sulcata)组合在另一分支。ITS系统发育树还表明,大明竹与巴山木竹、鼓节矢竹与矢竹、少穗竹与短穗竹和肿节竹关系极为密切,均得到较高的Bootstrap(分别为99%、100%和87%)的支持;茶秆竹与仙居苦竹关系非常密切,茶秆竹可归隶到青篱竹属中;翠竹和菲白竹关系密切,且与苦竹类竹种分为两个分支。  相似文献   

16.
Various factors, including taxon density, sampling error, convergence, and heterogeneity of evolutionary rates, can potentially lead to incongruence between phylogenetic trees based on different genomes. Particularly at the generic level and below, chloroplast capture resulting from hybridization may distort organismal relationships in phylogenetic analyses based on the chloroplast genome, or genes included therein. However, the extent of such discord between chloroplast DNA (cpDNA) trees and those trees based on nuclear genes has rarely been assessed. We therefore used sequences of the internal transcribed spacer regions (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) to reconstruct phylogenetic relationships among members of the Heuchera group of genera (Saxifragaceae). The Heuchera group presents an important model for the analysis of chloroplast capture and its impact on phylogenetic reconstruction because hybridization is well documented within genera (e.g., Heuchera), and intergeneric hybrids involving six of the nine genera have been reported. An earlier study provided a well-resolved phylogenetic hypothesis for the Heuchera group based on cpDNA restriction-site variation. However, trees based on ITS sequences are discordant with the cpDNA-based tree. Evidence from both morphology and nuclear-encoded allozymes is consistent with the ITS trees, rather than the cpDNA tree, and several points of phylogenetic discord can clearly be attributed to chloroplast capture. Comparison of the organellar and ITS trees also raises the strong likelihood that ancient events of chloroplast capture occurred between lineages during the early diversification of the Heuchera group. Thus, despite the many advantages and widespread use of cpDNA data in phylogeny reconstruction, comparison of relationships based on cpDNA and ITS sequences for the Heuchera group underscores the need for caution in the use of organellar variation for retrieving phylogeny at lower taxonomic levels, particularly in groups noted for hybridization.  相似文献   

17.
The 18S-26S nuclear rDNA external transcribed spacer (ETS) has recently gained attention as a region that is valuable in phylogenetic analyses of angiosperms primarily because it can supplement nucleotide variation from the widely used and generally shorter internal transcribed spacers (ITS-1 and ITS-2) and thereby improve phylogenetic resolution and clade support in rDNA trees. Subrepeated ETS sequences (often occurring in the 5(') region) can, however, create a challenge for systematists interested in using ETS sequence data for phylogeny reconstruction. We sequenced the 5(')ETS for members of Lessingia (Compositae, Astereae) and close relatives (26 taxa total) to characterize the subrepeat variation across a group of closely related plant lineages and to gain improved understanding of the structure, molecular evolution, and phylogenetic utility of the region. The 5(')ETS region of Lessingia and relatives varied in length from approximately 245 to 1009 bp due to the presence of a variable number of subrepeats (one to eight). We assessed homology of the subrepeats using phylogenetic analysis and concluded that only two of the subrepeats and a portion of a third ( approximately 282 bp in total) were orthologous across Lessingia and could be aligned with confidence and included in further analyses. When the partial 5(')ETS data were combined with 3(')ETS and ITS data in phylogenetic analyses, no additional resolution of relationships among taxa was obtained beyond that found from analysis of 3(')ETS + ITS sequences. Inferred patterns of concerted evolution indicate that homogenization is occurring at a faster rate in the 3(')ETS and ITS regions than in the 5(')ETS region. Additionally, homogenization appears to be acting within but not among subrepeats of the same rDNA array. We conclude that challenges in assessing subrepeat orthology across taxa greatly limit the utility of the 5(')ETS region for phylogenetic analyses among species of Lessingia.  相似文献   

18.
Two hundred and sixty eight DNA sequences (hypervariable region 1 of the mitochondrial control region) were obtained from chimpanzees ( Pan troglodytes ) in 19 natural populations within the range of the easternmost subspecies, P. t. schweinfurthii. Methods of phylogenetic reconstruction were applied at both the haplotype and population levels. Chimpanzee haplotypes do not sort into location-specific clades on any haplotype trees, indicating that the subspecies is free of major phylogeographic subdivisioning. Trees of populations in which geographic structure was imposed on the data lacked phylogenetic resolution in that interpopulational relationships were poorly supported statistically. These results indicate either a near simultaneous origin for the chimpanzee populations sampled, or an obscuring of interpopulational phylogenetic relationships by gene flow. In contrast, area cladograms of the forests from which chimpanzees were sampled (constructed using lists of endemic taxa) were robust and statistically well-supported. Chimpanzee population history is apparently decoupled from the history of the forests which the populations inhabit. Eastern chimpanzee data are also used to draw phylogenetic and molecular evolutionary comparisons to humans.  相似文献   

19.
20.
A restriction-site analysis of chloroplast DNA (cpDNA) variation in Lens was conducted to: (1) assess the levels of variation in Lens culinaris ssp. culinaris (the domesticated lentil), (2) identify the wild progenitor of the domesticated lentil, and (3) construct a cpDNA phylogeny of the genus. We analyzed 399 restriction sites in 114 cultivated accessions and 11 wild accessions. All but three accessions of the cultivar had identical cpDNAs. Two accessions exhibited a single shared restriction-site loss, and a small insertion was observed in the cpDNA of a third accession. We detected 19 restriction-site mutations and two length mutations among accessions of the wild taxa. Three of the four accessions of L. culinaris ssp. orientalis were identical to the cultivars at every restriction site, clearly identifying ssp. orientalis as the progenitor of the cultivated lentil. Because of its limited cpDNA diversity, we conclude that either the cultivated lentil has passed through a genetic bottleneck during domestication and lost most of its cytoplasmic variability or else was domesticated from an ancestor that was naturally depauperate in cpDNA restriction-site variation. However, because we had access to only a small number of populations of the wild taxa, the levels of variation present in ssp. orientalis can only be estimated, and the extent of such a domestication bottleneck, if applicable, cannot be evaluated. The cpDNA-based phylogeny portrays Lens as quite distinct from its putative closest relative, Vicia montbretii. L. culinaris ssp. odemensis is the sister of L. nigricans; L. culinaris is therefore paraphyletic given the current taxonomic placement of ssp. odemensis. Lens nigricans ssp. nigricans is by far the most divergent taxon of the genus, exhibiting ten autapomorphic restriction-site mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号