首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
A rapid, specific, and reliable LC-MS/MS based bioanalytical method was developed and validated for the simultaneous determination of naloxone (NLX) and its two metabolites, 6β-naloxol (NLL) and naloxone-3β-D-glucuronide (NLG) in mouse plasma. The optimal chromatographic behavior of these analytes was achieved on an Aquasil C18 column (50 mm × 2.1 mm, 5 μm) using reversed phase chromatography. The total LC analysis time per injection was 2.5 min with a flow rate of 1.0 mL/min with gradient elution. Sample preparation via protein precipitation with acetonitrile in a 96-well format was applied for analyses of these analytes. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. Modification of collision energy besides chromatographic separation was applied to further eliminate interference peaks for NLL and NLG. The method validation was conducted over the curve range of 0.200/0.400/0.500 to 100/200/250 ng/mL for NLX/NLL/NLG, respectively, using 0.0250 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 6.5% relative standard deviation (RSD) and -8.3 to -2.5% relative error (RE). The method was successfully applied to determine the concentrations of NLX, NLL, and NLG in incurred mouse plasma samples.  相似文献   

2.
A rapid and specific LC–MS/MS based bioanalytical method was developed and validated for the determination of 18-(p-iodophenyl)octadecyl phosphocholine (CLR1401), a novel phosphocholine drug candidate, in rat plasma. The optimal chromatographic behavior of CLR1401 was achieved on a Kromasil silica column (50 mm × 3 mm, 5 μm) under hydrophilic interaction chromatography. The total LC analysis time per injection was 2.8 min with a flow rate of 1.5 mL/min under gradient elution. Liquid–liquid extraction in a 96-well format using ethyl acetate was developed and applied for method validation and sample analysis. The method validation was conducted over the curve range of 2.00–1000 ng/mL using 0.0500 mL of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed ≤ 5.9% relative standard deviation (RSD) and −10.8 to −1.4% relative error (RE). The method was successfully applied to determine the toxicokinetics of CLR1401 in rats from three dose groups of 0.4, 4.0, and 10.0 mg/kg/day via intravenous administration.  相似文献   

3.
A sensitive method has been developed and validated for the determination of artesunate and its active metabolite dihydroartemisinin (DHA) in human plasma using artemisinin as an internal standard. Solid phase extraction (SPE) using Oasis HLB extraction cartridges was used for sample preparation and analysis was performed on a Shimadzu LCMS-2010 in single ion monitoring positive mode using atmospheric pressure chemical ionization (APCI) as an interface. Positive ions were measured using extracted ion chromatogram mode. The extracted ion for artesunate, alpha- and beta-DHA was m/z 221 and for artemisinin was m/z 283. Chromatography was carried out using a Synergi Max-RP, 4 mu, 75 mm x 4.6 mm column using glacial acetic acid 0.1%, acetonitrile and methanol mixture (38:46.5:15.5) as a mobile phase delivered at a flow rate of 0.5 mL/min. The retention times of artesunate, alpha- and beta-DHA and artemisinin were 17.4, 11.8, 18.7 and 13.4 min, respectively, with a total run time of 21 min. The assay was linear over the range 1-3000 ng/mL for artesunate and DHA. The analysis of quality control samples for artesunate 50, 300, 1300 and 2600 ng/mL demonstrated excellent precision with relative standard deviation of 14.3, 11.3, 7.5 and 12.1%, respectively (n=5). Recoveries at concentration of 50, 300, 1300 and 2600 ng/mL were 75, 94.5, 74.3 and 75.5%, respectively; similar results were obtained for precision and recovery of DHA. This liquid chromatography-mass spectroscopy (LC-MS) method for the determination of artesunate and DHA in human plasma has superior specification for sensitivity, sample throughput and robustness than previous methods and can reliably quantitate concentrations of both (artesunate and DHA) compounds as low as 1 ng/mL.  相似文献   

4.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

5.
A simple, precise and rapid ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for the quantification of darunavir, a protease inhibitor, using darunavir-d9 as internal standard (IS). The method involved liquid-liquid extraction of darunavir and IS in methyl-tert-butyl ether from 50 μL human plasma. The chromatographic separation was achieved on an Acquity UPLC BEH C18 (50 mm × 2.1mm, 1.7 μm particle size) analytical column under gradient conditions, in a run time of 1.6 min. The precursor → product ion transitions for darunavir (m/z 548.1 → 392.0) and IS (m/z 557.1 → 401.0) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) and positive ion mode. The method was extensively validated for its selectivity, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability and dilution integrity. The linearity of the method was established in the concentration range of 1.0-5000 ng/mL. The mean relative recovery for darunavir (100.8%) and IS (89.8%) from spiked plasma samples was consistent and reproducible. The application of this method for routine measurement of plasma darunavir concentration was demonstrated by a bioequivalence study conducted in 40 healthy Indian subjects for a 600 mg tablet formulation along with 100mg ritonavir as booster under fast and fed conditions. To demonstrate the reproducibility in the measurement of study data, an incurred sample reanalysis was done with 400 subject samples and the % change in concentration was within ± 12%.  相似文献   

6.
Ursolic acid is a hydroxy pentacyclic triterpene, which proved to have sedation, anti-inflammatory, antibacterial, antiulcer and anti-cancer activities. An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method with high selectivity, sensitivity and throughput has been established and validated for quantitation of total ursolic acid in human plasma. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate and were chromatographed by an ACQUITY UPLC BEH C(8) column (100 mm×2.1 mm, I.D., 1.7 μm) using mobile phase consisting of acetonitrile and 10 mM ammonium formate (90:10, v/v) at 0.2 mL/min. The duration of chromatography analysis was 3 min. The multiple reaction monitoring (MRM) was performed at m/z 455.1→455.0 for ursolic acid and m/z 469.3→425.2 for glycyrrhetinic acid (internal standard, IS) in the negative ion mode with electrospray ionization (ESI) source. The assay showed good linearity over the range of 10-5000 ng/mL for ursolic acid in human plasma with a lower limit of quantitation of 10 ng/mL. The mean extraction recovery was 73.2±4.5% and the matrix ion suppression ranged from -11.4% to -5.6%. The intra- and inter-day precisions were less than 7.0% and 7.2%, respectively, and the accuracy was within ±2.0%. Ursolic acid was stable during the analysis and the storage period. The validated method has been successfully applied to a pharmacokinetic study after intravenous infusion of Ursolic Acid Nano-liposomes to healthy volunteers.  相似文献   

7.
A sensitive, rapid liquid chromatographic-electrospray ionization mass spectrometric method for the determination of xanthinol in human plasma was developed and validated. Xanthinol nicotinate in plasma (0.5mL) was pretreated with 20% trichloroacetic acid for protein precipitation. The samples were separated using a Lichrospher silica (5mum, 250mmx4.6mm i.d.). A mobile phase of methanol-water containing 0.1% formic acid (50: 50, v/v) was used isocratically eluting at a flow rate of 1mL/min. Xanthinol and its internal standard (IS), acyclovir, were measured by electrospray ion source in positive selected reaction monitoring mode. The method demonstrated that good linearity ranged from 10.27 to 1642.8ng/mL with r=0.9956. The limit of quantification for xanthinol in plasma was 10.27ng/mL with good accuracy and precision. The mean plasma extraction recovery of xanthinol was in the range of 90.9-100.2%. The intra- and inter-batch variability values were less than 4.8% and 7.9% (relative standard deviation, R.S.D.), respectively. The established method has been successfully applied to a bioequivalence study of two xanthinol nicotinate tablets for 20 healthy volunteers.  相似文献   

8.
A sensitive method for the determination of lapatinib (GW572016) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Plasma samples (100 microL) were prepared using solid phase extraction (SPE) columns, and 6.0 microL of the reconstituted eluate was injected onto a Phenomenex CuroSil-PFP 3 mu analytical column (50 mm x 2.0mm) with an isocratic mobile phase. Analytes were detected with a PE SCIEX API-365 LC-MS/MS system at unit (Q1) and low (Q3) resolution in positive multiple reaction monitoring mode (m/z 581 (precursor ion) to m/z 364 (product ion) for lapatinib). The mean recovery for lapatinib was 75% with a lower limit of quantification of 15 ng/mL (S/N=11.3, CV< or =14%). This method was validated over a linear range of 100-10,000 ng/mL, and results from a 5-day validation study demonstrated good within-day and between-day precision and accuracy. This method has been used to measure plasma lapatinib concentrations in a Phase I study in children with cancer.  相似文献   

9.
A rapid and sensitive liquid chromatography-tandem mass spectrometric method (LC-MS/MS) had been developed and validated to determine the concentrations of BPR0L075 in rat plasma. After a simple protein precipitation of plasma samples by acetonitrile, BPR0L075 was analyzed on a C(8) column at a flow rate of 0.5 mL/min. The mobile phase consisted of a mixture of 10 mM ammonium acetate containing 0.1% formic acid and acetonitrile (20:80, v/v). Both BPR0L075 (analyte) and the internal standard (BPR0L092) were determined using electro-spray ionization and the MS data acquisition was via multiple reactions monitoring (MRM) in positive scanning model. The MS/MS ion transitions monitored are m/z 342.2/195.2 and 312.5/165.2 for BPR0L075 and BPR0L092, respectively. The low limit of quantitation was 0.5 ng/mL. Each plasma sample was chromatographed within 5 min. The method was validated with respect to linearity, accuracy, precision, recovery, and stability. A good linear relationship was observed over the concentration range of 0.5-1000 ng/mL (r>0.9994). Absolute recoveries ranged from 63.45 to 68.34% in plasma at the concentrations of 2, 40, 400, and 800 ng/mL. The intra- and inter-day accuracy ranged from 92.04 to 111.80%. Intra- and inter-day relative standard deviations were 1.08-3.29% and 1.96-5.46%, respectively. This developed and validated assay method had been successfully applied to a pharmacokinetic study after intravenous injection of BPR0L075 in rats at a dose of 5mg/kg.  相似文献   

10.
An HPLC-MS/MS method was developed for the determination of MK-0518 (raltegravir), an HIV integrase inhibitor, in human plasma over the concentration range of 2-1000 ng/mL. Stable isotope labeled (13)C(6)-MK-0518 was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction with hexane:methylene chloride in the 96-well format with a 200 microL plasma sample size. The compounds were chromatographed on an Ace C(18) (50 x 3.0 mm, 3 microm, titanium frits) column with 42.5/57.5 (v/v %) 0.1mM EDTA in 0.1% formic acid/methanol mobile phase at a flow rate of 0.5 mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for MK-0518 (m/z 445-->109) and (13)C(6)-MK-0518 (m/z 451-->367) on an Applied Biosystem API 4000 HPLC-MS/MS was used for quantitation. Intraday precision of standard curve concentrations in five different lots of control plasma was within 3.2%, while accuracy ranged from 94.8 to 106.8%. The mean extraction recovery of spiked plasma samples was 87%. Quality control (QC) samples were stored at -20 degrees C. Initial within day analysis showed QC accuracy within 7.5% of nominal with precision of 3.1% or less. The plasma QC samples were demonstrated to be stable for up to 23 months at -20 degrees C. The method described has been used to support over 18 clinical studies during Phase I through III of clinical development.  相似文献   

11.
A simple, accurate, precise, specific and reproducible high-performance liquid chromatography (HPLC) method was developed for determination of trans-polydatin, a natural strong anti-oxidative compound, in rat plasma and cell suspension. The assay procedure involved simple liquid-liquid extraction, the supernatant liquid was added an equal volume of water to avoid solvent effect. The detection of the analyte peak was achieved by monitoring the eluate using a UV detector set at 303 nm. The analysis used a Hypersil ODS2 C18 column (5 microm, 4.6 mm x 250 mm) and methanol/distilled water as the mobile phase (flow rate=1 mL/min). A total analytical run was achieved within 6.0 min and calibration curve was linear over a wide concentration range of 0.25-40 microg/mL for plasma sample and 1.0-500 microM for cell suspension, the coefficients of correlation were 0.9997 and 0.9999 or better, respectively. There was 80.7+/-7.86%, 96.8+/-3.20% and 102.7+/-9.72% recovery from 0.5, 10, and 40 microg/mL plasma samples, respectively. Intra- and inter-batch accuracy and precision were acceptable for the both matrices. The RSD of intra- and inter-day assay variations were all less than 10%. Both analyte and IS were stable in the battery of stability studies, freeze-thaw cycles. The described assay method was applied to pharmacokinetic studies in rats and a human colon adenocarcinoma cell line (Caco-2) successfully. The application of the assay to determine the pharmacokinetic is described.  相似文献   

12.
A simple, rapid and precise HPLC method has been developed for the assay of verapamil in human plasma. The clean up of the plasma samples was tested using several adsorbents for solid-phase extraction and best recovery was obtained using mixed-mode cartridges (HLB - hydrophilic-lipophilic balance) ranging between 94.70 and 103.71%. HPLC separation was performed with isocratic elution on Lichrospher 60 RP-select B column (250 mm × 4 mm I.D., 5 μm particle size). The mobile phase was 40% acetonitrile and 0.025 mol/L KH2PO4 with pH 2.5 at flow rate of 1 mL/min. Diltiazem was used as internal standard and the detection wavelength was 200 nm. The calibration curves were linear in the range of 10–500 ng/mL. The developed method is convenient for routine analysis of verapamil in human plasma.  相似文献   

13.
A sensitive, rapid liquid chromatographic-electrospray ionization mass spectrometric method for determination of erythromycylamine in human plasma was developed and validated. Erythromycylamine in plasma (0.2 mL) was extracted with ethyl acetate, the organic phase was transferred to another clear 1.5 mL Eppendorf tube and evaporated to dryness under gentle nitrogen stream at 45 degrees C, and the residue was dissolved in 100 microL of mobile phase. The samples were separated using a Thermo Hypersil HyPURITY C18 reversed-phase column (150 mm x 2.1 mm I.D., 5 microm). A mobile phase containing 10 mM of ammonium acetate (pH = 6.4)-acetonitrile-methanol (50:10:40, v/v/v) was used isocratically eluting at a flow rate of 0.2 mL/min. Erythromycylamine and its internal standard (IS), midecamycin, were measured by electrospray ion source in positive selective ion monitoring mode. The method demonstrated that good linearity ranged from 4.5 to 720 ng/mL with r = 0.9997. The limit of quantification for erythromycylamine in plasma was 4.5 ng/mL with good accuracy and precision. The mean extraction recovery of the method was higher than 75.1% and 72.7% for erythromycylamine and IS, respectively. The intra-day and inter-day precision ranged from 5.2% to 6.4% and 5.6-9.3% (relative standard deviation, RSD), respectively. The established method has been successfully applied to a bioequivalence study of two dirithromycin formulations for 18 healthy volunteers.  相似文献   

14.
Validation of two HPLC assays for the quantitation of carboplatin in human plasma ultrafiltrate is described. Both assay methods employed a YMC ODS-AQ 3.9×150 mm (3 μm) column for the chromatographic separation. The first method utilized direct UV detection, the second method utilized UV detection following post-column derivatization with sodium bisulfite. Structural analogues of carboplatin were synthesized and used as internal standards for the assays. With direct UV detection, sample clean-up using solid-phase extraction on amino cartridges was required prior to injection, with extraction recoveries ranging from 80 to 90%. This extraction procedure was not necessary with the post-column reaction method, which employed a more selective analytical wavelength. Unfortunately, instability of the post-column reagent was a problem and led to greater variability in predicted concentration values. For standard curves, a weighted (1/y2) regression approach was used for plots of peak area or peak height ratio (carboplatin/internal standard) vs. carboplatin concentration. The limit of detection of both assays was 0.025 μg/ml and both were validated for carboplatin concentrations from 0.05 to 40 μg/ml. Accuracy and precision data were generated using three batches of validation samples, each batch consisting of a standard curve and five sets of quality control samples. Stability of carboplatin in blood, plasma, plasma ultrafiltrate, and reconstituted extracts was evaluated. The assay methods were employed for the pharmacokinetic analysis of blood samples drawn from a pediatric patient that received a 400 mg/m2 dose of carboplatin.  相似文献   

15.
Clinical pharmacokinetic studies of ciprofloxacin require accurate and precise measurement of plasma drug concentrations. We describe a rapid, selective and sensitive HPLC method coupled with fluorescence detection for determination of ciprofloxacin in human plasma. Internal standard (IS; sarafloxacin) was added to plasma aliquots (200 μL) prior to protein precipitation with acetonitrile. Ciprofloxacin and IS were eluted on a Synergi Max-RP analytical column (150 mm×4.6 mm i.d., 5 μm particle size) maintained at 40°C. The mobile phase comprised a mixture of aqueous orthophosphoric acid (0.025 M)/methanol/acetonitrile (75/13/12%, v/v/v); the pH was adjusted to 3.0 with triethylamine. A fluorescence detector (excitation/emission wavelength of 278/450 nm) was used. Retention times for ciprofloxacin and IS were approximately 3.6 and 7.0 min, respectively. Calibration curves of ciprofloxacin were linear over the concentration range of 0.02-4 μg/mL, with correlation coefficients (r(2))≥0.998. Intra- and inter-assay relative standard deviations (SD) were <8.0% and accuracy values ranged from 93% to 105% for quality control samples (0.2, 1.8 and 3.6 μg/mL). The mean (SD) extraction recoveries for ciprofloxacin from spiked plasma at 0.08, 1.8 and 3.6 μg/mL were 72.8±12.5% (n=5), 83.5±5.2% and 77.7±2.0%, respectively (n=8 in both cases). The recovery for IS was 94.5±7.9% (n=15). The limits of detection and quantification were 10 ng/mL and 20 ng/mL, respectively. Ciprofloxacin was stable in plasma for at least one month when stored at -15°C to -25°C and -70°C to -90°C. This method was successfully applied to measure plasma ciprofloxacin concentrations in a population pharmacokinetics study of ciprofloxacin in malnourished children.  相似文献   

16.
A rapid, sensitive and specific method to determination of ambroxol in human plasma using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-MS/ESI) was described. Ambroxol and the internal standard (I.S.), fentanyl, were extracted from plasma by N-hexane-diethyl ether (1:1, v/v) after alkalinized with ammonia water. A centrifuged upper layer was then evaporated and reconstituted with 100 microl mobile phase. Chromatographic separation was performed on a BDS HYPERSIL C18 column (250 mmx4.6 mm, 5.0 microm, Thermo electron corporation, USA) with the mobile phase consisting of 30 mM ammonium acetate (0.4% formic acid)-acetonitrile (64:36, v/v) at a flow-rate of 1.2 mL min(-1). The total run time was 5.8 min for each sample. Detection and quantitation was performed by the mass spectrometer using selected ion monitoring at m/z 261.9, 263.8 and 265.9 for ambroxol and m/z 337.3 for fentanyl. The calibration curve was linear within the concentration range of 1.0-100.0 ng mL(-1) (r=0.9996). The limit of quantification was 1.0 ng mL(-1). The extraction recovery was above 83.3%. The methodology recovery was higher than 93.8%. The intra- and inter-day precisions were less than 6.0%. The method is accurate, sensitive and simple for the study of the pharmacokinetics and metabolism of ambroxol.  相似文献   

17.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

18.
An original HPLC-UV method has been developed for the simultaneous determination of the atypical antipsychotic quetiapine and the geometric isomers of the second-generation antidepressant fluvoxamine. The analytes were separated on a reversed-phase C8 column (150 mm x 4.6mm i.d., 5 microm) using a mobile phase composed of acetonitrile (30%) and a 10.5mM, pH 3.5 phosphate buffer containing 0.12% triethylamine (70%). The flow rate was 1.2 mL min(-1) and the detection wavelength was 245 nm. Sample pretreatment was carried out by an original solid-phase extraction procedure using mixed-mode cation exchange (DSC-MCAX) cartridges; only 300 microL of plasma were needed for one analysis. Citalopram was used as the internal standard. The method was validated in terms of linearity, extraction yield, precision and accuracy. Good linearity was obtained in plasma over the 5.0-160.0 ng mL(-1) concentration range for each fluvoxamine isomer and over the 2.5-400.0 ng mL(-1) concentration range for quetiapine. Extraction yield values were always higher than 93%, with precision (expressed as relative standard deviation values) better than 4.0%. The method was successfully applied to human plasma samples drawn from patients undergoing polypharmacy with the two drugs. Satisfactory accuracy values were obtained, with mean recovery higher than 94%.  相似文献   

19.
A liquid chromatography method coupled to mass spectrometry was developed for the quantification of bupropion, its metabolite hydroxy-bupropion, moclobemide, reboxetine and trazodone in human plasma. The validation of the analytical procedure was assessed according to Société Fran?aise des Sciences et Techniques Pharmaceutiques and the latest Food and Drug Administration guidelines. The sample preparation was performed with 0.5 mL of plasma extracted on a cation-exchange solid phase 96-well plate. The separation was achieved in 14 min on a C18 XBridge column (2.1 mm×100 mm, 3.5 μm) using a 50 mM ammonium acetate pH 9/acetonitrile mobile phase in gradient mode. The compounds of interest were analysed in the single ion monitoring mode on a single quadrupole mass spectrometer working in positive electrospray ionisation mode. Two ions were selected per molecule to increase the number of identification points and to avoid as much as possible any false positives. Since selectivity is always a critical point for routine therapeutic drug monitoring, more than sixty common comedications for the psychiatric population were tested. For each analyte, the analytical procedure was validated to cover the common range of concentrations measured in plasma samples: 1-400 ng/mL for reboxetine and bupropion, 2-2000 ng/mL for hydroxy-bupropion, moclobemide, and trazodone. For all investigated compounds, reliable performance in terms of accuracy, precision, trueness, recovery, selectivity and stability was obtained. One year after its implementation in a routine process, this method demonstrated a high robustness with accurate values over the wide concentration range commonly observed among a psychiatric population.  相似文献   

20.
A sensitive method was developed and validated for the measurement of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) and its active metabolite 17-amino-17-demethoxygeldanamycin (17AG) in human plasma using 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17DMAG) as an internal standard. After the addition of internal standard, 200 microL of plasma was extracted using ice cold acetonitrile followed by analysis on a Thermo Finnigan triple-quadruple mass spectrometer coupled to an Agilent 1100 HPLC system. Chromatography was carried out on a 50 mm x 2.1 mm Agilent Zorbax SB-phenyl 5 microm column coupled to a 3mm Varian metaguard diphenyl pre-column using glacial acetic acid 0.1% and a gradient of acetonitrile and water at a flow rate of 500 microL/min. Atmospheric pressure chemical ionization and detection of 17AAG, 17AG and 17DMAG were accomplished using selected reaction monitoring of m/z 584.3>541.3, 544.2>501.2, and 615.3>572.3, respectively in negative ion mode. Retention times for 17AAG, 17AG, and 17DMAG were 4.1, 3.5, and 2.9 min, respectively, with a total run time of 7 min. The assay was linear over the range 0.5-3000 ng/mL for 17AAG and 17AG. Replicate sample analysis indicated within- and between-run accuracy and precision within 15%. The recovery of 17AAG and 17AG from 200 microL of plasma containing 1, 25, 300, and 2500 ng/mL was 93% or greater. This high-performance liquid chromatographic tandem mass spectroscopy (HPLC/MS/MS) method is superior to previous methods. It is the first analytical method reported to date for the quantitation of both 17AAG and its metabolite 17AG and can reliably quantitate concentrations of both compounds as low as 0.5 ng/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号