首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic activity of a membrane-bound enzyme, d-fructose dehydrogenase (FDH), at the polarized oil/water (O/W) interface was studied. Multisweep cyclic voltammetry and ac voltammetry were carried out to show the irreversible adsorption of FDH at the interface. Using the thusly prepared FDH-adsorbed O/W interface, clear steady-state catalytic current was observed in amperometry and cyclic voltammetry, where 1,1′-dimethylferrocenium ion (DiMFc+, electron acceptor) and d-fructose (substrate) were added to the O and W phases, respectively. The observed catalytic current was then analyzed by using two mechanisms. In mechanism (A), the heme c site of FDH, where DiMFc+ is reduced, was assumed to be located in the O-phase side of the interface. The intramolecular electron transfer in FDH should be affected by the Galvani potential difference of the interface (). However, the theoretical equations derived for the catalytic current could not reproduce the experimental data. In mechanism (B), the heme c site was assumed to be in the W-phase side. In this case, should affect the interfacial distribution of DiMFc+. This mechanism could reproduce well the observed potential dependence of the catalytic current.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) were synthesized on platinum plate electrodes by the chemical vapor deposition (CVD) method. From the results of X-ray photoelectron spectroscopy and voltammetric investigation, the iron nanoparticles used as a catalyst for the MWCNT synthesis were enclosed with MWCNTs. The MWCNTs synthesized on the Pt plate (MWCNTs/Pt) electrode were immediately immersed into solutions of d-fructose dehydrogenase (FDH) to immobilize the enzyme onto the MWCNTs/Pt electrode surfaces. After the FDH was immobilized onto the MWCNTs/Pt electrode, a well-defined catalytic oxidation current based on FDH was observed from ca. -0.15V (versus Ag/AgCl/sat'd KCl), which was close to the redox potential of heme c as a prosthetic group of FDH. From an analysis of a plot of the catalytic current versus substrate, the calibration range for the fructose concentration was up to ca. 40mmoldm(-3), and the apparent Michaelis-Menten constant was evaluated to be 11+/-1mmoldm(-3).  相似文献   

3.
He P  Hu N  Zhou G 《Biomacromolecules》2002,3(1):139-146
Layer-by-layer (PDDA/Hb)(n) films were assembled by alternate adsorption of positively charged poly(diallyldimethylammonium) (PDDA) and negatively charged hemoglobin (Hb) at pH 9.2 from their aqueous solutions on pyrolytic graphite electrodes and other substrates. The assembly process was monitored and confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). CVs of (PDDA/Hb)(n) films showed a pair of well-defined, nearly reversible peaks at about -0.34 V vs SCE at pH 7.0, characteristic of Hb heme Fe(III)/Fe(II) redox couple. Positions of Soret absorption band and infrared amide II band of Hb in (PDDA/Hb)(8) films suggest that Hb in the films keeps its secondary structure similar to its native state. The electrochemical parameters of (PDDA/Hb)(8) films were estimated by square wave voltammetry, and the thickness of the PDDA/Hb bilayer was estimated by QCM and scanning electron microscopy. Trichloroacetic acid and nitrite (NO(2)(-)) were catalytically reduced at (PDDA/Hb)(8) film electrodes. The electrochemical catalytic reactions of O(2) and H(2)O(2) on (PDDA/Hb)(8) films were also studied.  相似文献   

4.
5.
A study of bovine endothelial nitric oxide synthase by Fourier transform infrared (FTIR) spectroscopy in the 1000-2500 cm(-)(1) range is reported. Binding of CO to the reduced enzyme gives two heme(II)-CO nu(C)(-)(O) stretches (1927 and 1904 cm(-)(1)) which appear to be in rapid equilibrium. Photolysis of this heme(II)-CO compound is accompanied by perturbation of the local fine structure around the catalytic site giving vibrational changes of protein backbone, substrate, amino acid residues, and cofactors, to which heme, substrate arginine, and catalytic site residues contribute. Possible assignments of vibrations to heme, substrate arginine, and catalytic site residues are discussed. The discussion of assignments is informed by known structures, absorbance frequencies, and extinction coefficients of residues and cofactors, analysis of H(2)O-D(2)O exchange effects, analysis of substrate (14)N-(15)N (guanidinium)-arginine exchange effects, and comparison with the nNOS isoform (which differs in the replacement of asparagine 368 with an aspartate within the substrate binding site). The FTIR data can be modeled on the known structure of the catalytic site and indicate the extent of modulation of vibrational modes upon photolysis of the CO compound.  相似文献   

6.
The oxidative part of the catalytic cycle of the caa(3)-type cytochrome c oxidase from Thermus thermophilus was followed by time-resolved optical spectroscopy. Rate constants, chemical nature and the spectral properties of the catalytic cycle intermediates (Compounds A, P, F) reproduce generally the features typical for the aa(3)-type oxidases with some distinctive peculiarities caused by the presence of an additional 5-th redox-center-a heme center of the covalently bound cytochrome c. Compound A was formed with significantly smaller yield compared to aa(3) oxidases in general and to ba(3) oxidase from the same organism. Two electrons, equilibrated between three input redox-centers: heme a, Cu(A) and heme c are transferred in a single transition to the binuclear center during reduction of the compound F, converting the binuclear center through the highly reactive O(H) state into the final product of the reaction-E(H) (one-electron reduced) state of the catalytic site. In contrast to previous works on the caa(3)-type enzymes, we concluded that the finally produced E(H) state of caa(3) oxidase is characterized by the localization of the fifth electron in the binuclear center, similar to the O(H)→E(H) transition of the aa(3)-type oxidases. So, the fully-reduced caa(3) oxidase is competent in rapid electron transfer from the input redox-centers into the catalytic heme-copper site.  相似文献   

7.
Flock U  Watmough NJ  Adelroth P 《Biochemistry》2005,44(31):10711-10719
The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction.  相似文献   

8.
To better understand potential roles of conserved Trp457 of the murine inducible nitric oxide synthase oxygenase domain (iNOS(ox); residues 1-498) in maintaining the structural integrity of the (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) binding site located at the dimer interface and in supporting H(4)B redox activity, we determined crystallographic structures of W457F and W457A mutant iNOS(ox) dimers (residues 66-498). In W457F iNOS(ox), all the important hydrogen-bonding and aromatic stacking interactions that constitute the H(4)B binding site and that bridge the H(4)B and heme sites are preserved. In contrast, the W457A mutation results in rearrangement of the Arg193 side chain, orienting its terminal guanidinium group almost perpendicular to the ring plane of H(4)B. Although Trp457 is not required for dimerization, both Trp457 mutations led to the increased mobility of the N-terminal H(4)B binding segment (Ser112-Met114), which might indicate reduced stability of the Trp457 mutant dimers. The Trp457 mutant structures show decreased pi-stacking with bound pterin when the wild-type pi-stacking Trp457 position is occupied with the smaller Phe457 in W457F or positive Arg193 in W457A. The reduced pterin pi-stacking in these mutant structures, relative to that in the wild-type, implies stabilization of reduced H(4)B and destabilization of the pterin radical, consequently slowing electron transfer to the heme ferrous-dioxy (Fe(II)O(2)) species during catalysis. These crystal structures therefore aid elucidation of the roles and importance of conserved Trp457 in maintaining the structural integrity of the H(4)B binding site and of H(4)B-bound dimers, and in influencing the rate of electron transfer between H(4)B and heme in NOS catalysis.  相似文献   

9.
Brown KR  Brown BM  Hoagland E  Mayne CL  Hegg EL 《Biochemistry》2004,43(27):8616-8624
Heme A is an obligatory cofactor in all eukaryotic and many prokaryotic cytochrome c oxidases. The final step in heme A biosynthesis requires the oxidation of the C8 methyl substituent on pyrrole ring D to an aldehyde, a reaction catalyzed by heme A synthase. To effect this transformation, heme A synthase is proposed to utilize a heme B cofactor, oxidizing the substrate via successive monooxygenase reactions. Consistent with this hypothesis, the activity of heme A synthase is found to be strictly dependent on molecular oxygen. Surprisingly, when cells expressing heme A synthase were incubated with (18)O(2), no significant incorporation of label was observed in heme A, the C8 alcohol intermediate, or the C8 overoxidized byproduct. Conversely, when the cells were grown in H(2)(18)O, partial labeling was observed at every heme oxygen position. These results suggest that the oxygen on the heme A aldehyde is derived from water. Although our data do not allow us to exclude the possibility of exchange with water inside of the cell, the results seem to question a mechanism utilizing successive monooxygenase reactions and support instead a mechanism of heme O oxidation via electron transfer.  相似文献   

10.
In this study, magnetic core-shell Fe(3)O(4)@Al(2)O(3) nanoparticles (NPs) attached to the surface of a magnetic glassy carbon electrode (MGCE) were used as a functional interface to immobilize several heme proteins including hemoglobin (Hb), myoglobin (Mb) and horseradish peroxidase (HRP) for fabricating protein/Fe(3)O(4)@Al(2)O(3) film. Transmission electron microscope, UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were used to characterize the films. With the advantages of the magnetism and the excellent biocompatibility of the Fe(3)O(4)@Al(2)O(3) NPs, the protein/Fe(3)O(4)@Al(2)O(3) film could be easily fabricated in the present of external magnetic field, and well retained the bioactivity of the immobilized proteins, hence dramatically facilitated direct electron transfer of heme proteins and excellent electrocatalytic behaviors towards H(2)O(2) were demonstrated. The presented system avoids the complex synthesis for protecting Fe(3)O(4) NPs, supplies a facile, low cost and universal way to immobilize proteins, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.  相似文献   

11.
Tryptophan 161 is a highly conserved residue that forms a hydrophobic side of the active site cavity of manganese superoxide dismutase (MnSOD), with its indole ring adjacent to and about 5 A from the manganese. We have made a mutant containing the conservative replacement Trp 161 --> Phe in human MnSOD (W161F MnSOD), determined its crystal structure, and measured the catalysis of the resulting mutant using pulse radiolysis to produce O(2)(*)(-). In the structure of W161F MnSOD the phenyl side chain of Phe 161 superimposes on the indole ring of Trp 161 in the wild type. However, in the mutant, the hydroxyl side chain of Tyr 34 is 3.9 A from the manganese, closer by 1.2 A than in the wild type. The tryptophan in MnSOD is not essential for the half-cycle of catalytic activity involving reduction of the manganese; the mutant W161F MnSOD had k(cat)/K(m) at 2.5 x 10(8) M(-)(1) s(-)(1), reduced only 3-fold compared with wild type. However, this mutant exhibited a strong product inhibition with a zero-order region of superoxide decay slower by 10-fold compared with wild type. The visible absorption spectrum of W161F MnSOD in the inhibited state was very similar to that observed for the inhibited wild-type enzyme. The appearance of the inhibited form required reaction of 2 molar equiv of O(2)(*)(-) with W161F Mn(III)SOD, one to form the reduced state of the metal and the second to form the inhibited complex, confirming that the inhibited complex requires reaction of O(2)(*)(-) with the reduced form of the enzyme. This work suggests that a significant role of Trp 161 in the active site is to promote the dissociation of product peroxide, perhaps in part through its effect on the orientation of Tyr 34.  相似文献   

12.
Lang J  Santolini J  Couture M 《Biochemistry》2011,50(46):10069-10081
Residues surrounding and interacting with the heme proximal ligand are important for efficient catalysis by heme proteins. The nitric oxide synthases (NOSs) are thiolate-coordinated enzymes that catalyze the hydroxylation of l-Arg in the first of the two catalytic cycles needed to synthesize nitric oxide. In NOSs, the indole NH group of a conserved tryptophan [W56 of the bacterial NOS-like protein from Staphylococcus aureus (saNOS)] forms a hydrogen bond with the heme proximal cysteinate ligand. The purpose of this study was to determine the impact of increasing (W56F and W56Y variants) or decreasing (W56H variant) the electron density of the proximal cysteinate ligand on molecular oxygen (O(2)) activation using saNOS as a model. We show that the removal of the indole NH···S(-) bond for W56F and W56Y caused an increase in the electron density of the cysteinate. This was probed by the decrease of the midpoint reduction potential (E(1/2)) along with weakened σ-bonding and strengthened π-backbonding with distal ligands (CO and O(2)). On the other hand, the W56H variant showed stronger Fe-OO and Fe-CO bonds (strengthened σ-bonding) along with an elevated E(1/2), which is consistent with the formation of a strong NH···S(-) hydrogen bond from H56. We also show here that changing the electron density of the proximal thiolate controls its "push effect"; whereas the rates of both O(2) activation and autoxidation of the Fe(II)O(2) complex increase with the stronger push effect created by removing the indole NH···S(-) hydrogen bond (W56F and W56Y variants), the W56H variant showed an increased stability of the complex against autoxidation and a slower rate of O(2) activation. These results are discussed with regard to the roles played by the conserved tryptophan-cysteinate interaction in the first catalytic cycle of NOS.  相似文献   

13.
Among the X-ray structures of bovine heart cytochrome c oxidase (CcO), reported thus far, the highest resolution is 1.8?. CcO includes 13 different protein subunits, 7 species of phospholipids, 7 species of triglycerides, 4 redox-active metal sites (Cu(A), heme a (Fe(a)), Cu(B), heme a(3) (Fe(a3))) and 3 redox-inactive metal sites (Mg(2+), Zn(2+) and Na(+)). The effects of various O(2) analogs on the X-ray structure suggest that O(2) molecules are transiently trapped at the Cu(B) site before binding to Fe(a3)(2+) to provide O(2)(-). This provides three possible electron transfer pathways from Cu(B), Fe(a3) and Tyr244 via a water molecule. These pathways facilitate non-sequential 3 electron reduction of the bound O(2)(-) to break the OO bond without releasing active oxygen species. Bovine heart CcO has a proton conducting pathway that includes a hydrogen-bond network and a water-channel which, in tandem, connect the positive side phase with the negative side phase. The hydrogen-bond network forms two additional hydrogen-bonds with the formyl and propionate groups of heme a. Thus, upon oxidation of heme a, the positive charge created on Fe(a) is readily delocalized to the heme peripheral groups to drive proton-transport through the hydrogen-bond network. A peptide bond in the hydrogen-bond network and a redox-coupled conformational change in the water channel are expected to effectively block reverse proton transfer through the H-pathway. These functions of the pathway have been confirmed by site-directed mutagenesis of bovine CcO expressed in HeLa cells.  相似文献   

14.
Lu H  Li Z  Hu N 《Biophysical chemistry》2003,104(3):623-632
The direct voltammetry and electrocatalytic properties of catalase (Cat) in polyacrylamide (PAM) hydrogel films cast on pyrolytic graphite (PG) electrodes were investigated. Cat-PAM film electrodes showed a pair of well-defined and nearly reversible cyclic voltammetry peaks for Cat Fe(III)/Fe(II) redox couples at approximately -0.46 V vs. SCE in pH 7.0 buffers. The electron transfer between catalase and PG electrodes was greatly facilitated in the microenvironment of PAM films. The apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E degrees ') were estimated by fitting square wave voltammograms with non-linear regression analysis. The formal potential of Cat Fe(III)/Fe(II) couples in PAM films had a linear relationship with pH between pH 4.0 and 9.0 with a slope of -56 mV pH(-1), suggesting that one proton is coupled with single-electron transfer for each heme group of catalase in the electrode reaction. UV-Vis absorption spectroscopy demonstrated that catalase retained a near native conformation in PAM films at medium pH. The embedded catalase in PAM films showed the electrocatalytic activity toward dioxygen and hydrogen peroxide. Possible mechanism of catalytic reduction of H(2)O(2) at Cat-PAM film electrodes was proposed.  相似文献   

15.
In the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH), the genome sequencing revealed the presence of three operons encoding formate dehydrogenases. fdh1 encodes an alphabetagamma trimeric enzyme containing 11 heme binding sites; fdh2 corresponds to an alphabetagamma trimeric enzyme with a tetrahemic subunit; fdh3 encodes an alphabeta dimeric enzyme. In the present work, spectroscopic measurements demonstrated that the reduction of cytochrome c(553) was obtained in the presence of the trimeric FDH2 and not with the dimeric FDH3, suggesting that the tetrahemic subunit (FDH2C) is essential for the interaction with this physiological electron transfer partner. To further study the role of the tetrahemic subunit, the fdh2C gene was cloned and expressed in Desulfovibrio desulfuricans G201. The recombinant FDH2C was purified and characterized by optical and NMR spectroscopies. The heme redox potentials measured by electrochemistry were found to be identical in the whole enzyme and in the recombinant subunit, indicating a correct folding of the recombinant protein. The mapping of the interacting site by 2D heteronuclear NMR demonstrated a similar interaction of cytochrome c(553) with the native enzyme and the recombinant subunit. The presence of hemes c in the gamma subunit of formate dehydrogenases is specific of these anaerobic sulfate-reducing bacteria and replaces heme b subunit generally found in the enzymes involved in anaerobic metabolisms.  相似文献   

16.
The ternary complex of NAD-dependent formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 (enzyme-NAD-azide) has been crystallised in the space group P2(1)2(1)2(1) with cell dimensions a = 11.60 nm, b = 11.33 nm, c = 6.34 nm. There is 1 dimeric molecule/asymmetric unit. An electron density map was calculated using phases from multiple isomorphous replacement at 0.30 nm resolution. Four heavy atom derivatives were used. The map was improved by solvent flattening and molecular averaging. The atomic model, including 2 x 393 amino acid residues, was refined by the CORELS and PROLSQ packages using data between 1.0 nm and 0.30 nm excluding structure factors less than 1 sigma. The current R factor is 27.1% and the root mean square deviation from ideal bond lengths is 4.2 pm. The FDH subunit is folded into a globular two-domain (coenzyme and catalytic) structure and the active centre and NAD binding site are situated at the domain interface. The beta sheet in the FDH coenzyme binding domain contains an additional beta strand compared to other dehydrogenases. The difference in quaternary structure between FDH and the other dehydrogenases means that FDH constitutes a new subfamily of NAD-dependent dehydrogenases: namely the P-oriented dimer. The FDH nucleotide binding region of the structure is aligned with the three dimensional structures of four other dehydrogenases and the conserved residues are discussed. The amino acid residues which contribute to the active centre and which make contact with NAD have been identified.  相似文献   

17.
Specific substrate-induced structural changes in the heme pocket are proposed for human cytochrome P450 aromatase (P450arom) which undergoes three consecutive oxygen activation steps. We have experimentally investigated this heme environment by resonance Raman spectra of both substrate-free and substrate-bound forms of the purified enzyme. The Fe-CO stretching mode (nu(Fe)(-)(CO)) of the CO complex and Fe(3+)-S stretching mode (nu(Fe)(-)(S)) of the oxidized form were monitored as a structural marker of the distal and proximal sides of the heme, respectively. The nu(Fe)(-)(CO) mode was upshifted from 477 to 485 and to 490 cm(-)(1) by the binding of androstenedione and 19-aldehyde-androstenedione, substrates for the first and third steps, respectively, whereas nu(Fe)(-)(CO) was not observed for P450arom with 19-hydroxyandrostenedione, a substrate for the second step, indicating that the heme distal site is very flexible and changes its structure depending on the substrate. The 19-aldehyde-androstenedione binding could reduce the electron donation from the axial thiolate, which was evident from the low-frequency shift of nu(Fe)(-)(S) by 5 cm(-)(1) compared to that of androstenedione-bound P450arom. Changes in the environment in the heme distal site and the reduced electron donation from the axial thiolate upon 19-aldehyde-androstenedione binding might stabilize the ferric peroxo species, an active intermediate for the third step, with the suppression of the formation of compound I (Fe(4+)=O porphyrin(+)(*)) that is the active species for the first and second steps. We, therefore, propose that the substrates can regulate the formation of alternative reaction intermediates by modulating the structure on both the heme distal and proximal sites in P450arom.  相似文献   

18.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

19.
Song JF  He P  Guo W 《Analytical biochemistry》2002,304(2):212-219
The polarographic catalytic wave of vitamin P in the presence of persulfate was studied by linear potential scan polarography and cyclic voltammetry. Vitamin P yielded a single reduction wave in acidic aqueous solution, which was ascribed to a 2e(-), 2H(+) reduction of the carbonyl group in the C-4 position. Actually, the carbonyl group C=O first underwent a 1e(-), 1H(+) reduction to form a neutral free radical, and the further 1e(-), 1H(+) reduction of the free radical was simultaneous with its following chemical reactions. When S(2)O(2-)(8) was present, the free radical of vitamin P was oxidized by both S(2)O(2-)(8) and its reduction intermediate, the sulfate radical anion SO(*-)(4), to regenerate the original, which resulted in the production of a polarographic catalytic wave of vitamin P. Based on this catalytic wave, a novel method for the determination of vitamin P was proposed. In 0.02 M tartaric acid-sodium tartrate (pH 3.3) buffer containing 5.0 x 10(-3) M K(2)S(2)O(8), the peak potential of the catalytic wave was -1.42 V (vs SCE) and the peak current was rectilinear to the vitamin P concentration in the range of 8.0 x 10(-9)-1.0 x 10(-6) M (r = 0.9994, n = 13). The catalytic wave of 2.0 x 10(-7) M vitamin P enhanced the polarographic current 70 times compared with the corresponding reduction wave. The detection limit was 2.0 x 10(-9) M, and the relative standard deviation at the 2.0 x 10(-7) M level was 0.7% (n = 15). The proposed method was used for the determination of vitamin P content in the pharmaceutical preparation of tablets and the medicinal plant Sophora japonica L. without previous separation.  相似文献   

20.
Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号