首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.  相似文献   

3.
Rhabdomyosarcomas are known to recapitulate some of the early events in skeletal muscle embryogenesis, and cultures derived from these tumors have been extensively used to elucidate processes associated with the differentiation of primitive mesenchymal cells. These neoplasms have also provided important systems for studying different collagen types. This aspect is particularly relevant to type XIX collagen, which was originally identified from rhabdomyosarcoma cDNA clones. Although this collagen has been localized in vivo to basement membrane zones in a wide variety of tissues, including skeletal muscle, the tumor cells appear to be a unique source of its expression in vitro. We have found that one particular cell line-derived from a peritesticular embryonal rhabdomyosarcoma-produced relatively large amounts of type XIX collagen, especially in those rare instances in which these cells appear to spontaneously differentiate. To characterize this phenomenon, tumor cells were grown under conditions known to induce differentiation in normal myoblast cultures. In response to this treatment, the typical tumor cell morphology consistently and reproducibly switched from polygonal to round/spindle-shaped with the subsequent appearance of some structures resembling myotubes. Concurrently, the cultures commenced a dramatic up-regulation of type XIX collagen and skeletal muscle myosin heavy chain and alpha-actinin in a time-dependent fashion, whereas protein and mRNA levels of other matrix proteins were either decreased or unchanged. Moreover, immunocytochemical analysis revealed that only a subpopulation of the cells was responsible for the increased synthesis of type XIX collagen, alpha-actinin, and myosin, and that the same cells which stained positive for the collagen also stained positive for the muscle proteins. Taken together, the results suggested that type XIX collagen may be involved in the initial stages of skeletal muscle cell differentiation.  相似文献   

4.
近年来,高强度间歇训练(high-intensity interval training,HIIT)被认为是一种调节骨骼肌质量及功能的运动方式,但其具体作用和机制以及运动和检测中需要注意的问题尚不明确。因此,梳理HIIT与骨骼肌质量及功能的关系显得尤为重要。本文综述HIIT上调骨骼肌蛋白质合成速率和下调萎缩速率、引发肌肉重塑和调节肌纤维类型、促进血管生成和血流灌注、介导骨骼肌线粒体含量上调和功能改善、增加肌肉力量和与膳食补充的协同作用等影响骨骼肌质量及功能的研究进展,为HIIT预防和改善肌肉丢失和功能下降提供理论依据和应用策略。  相似文献   

5.
Six groups of 5 male rats (starting body weight 109 g) were allowed free access to a conventional rat diet. At 4 hourly intervals, starting at 10.00 h muscle protein synthesis was measured. By relating the weights of the gastrocnemius and soleus muscles to the initial body weights of the animals (i.e., at 09.30, day 1), a linear increase in muscle weight throughout the day was demonstrated. The fractional rate of muscle protein synthesis varied from 16.8% per day to 20.3% per day in gastrocnemius muscle and from 17.9% per day and 22.1% per day in the soleus. It was calculated that the maximum error incurred in estimating daily muscle protein synthesis by extrapolation of the value at any one time was 6% in gastrocnemius and 9% in soleus. It is concluded that calculations of the average rate of muscle protein degradation based on the difference between the rates of synthesis and deposition are generally valid in rats allowed free access to an adequate diet.  相似文献   

6.
    
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a master regulator for the induction of antioxidative genes and plays roles in diverse cellular functions. The roles of Nrf2 in muscle regeneration have been investigated, and both important and unimportant roles of Nrf2 for muscle regeneration have been reported. Here, using aged Nrf2-null and Nrf2–dystrophic double-null mice, we showed nonsignificant phenotypes in the muscle regeneration ability of Nrf2-null mice. In contrast with these results, strikingly, almost all Nrf2-null muscle stem cells (MuSCs) isolated by fluorescence-activated cell sorting died in vitro of apoptosis and were not rescued by antioxidative reagents. Although their proliferation was still impaired, the Nrf2-null MuSCs attached to myofibers activated and divided normally, at least in the first round. To elucidate these discrepancies of MuSCs behaviors, we focused on the basal lamina, because both in vivo and single myofiber culture allow MuSCs within the basal lamina to become activated. In a basal lamina–disrupted model, Nrf2-null mice exhibited remarkable regeneration defects without increased levels of reactive oxidative species in MuSCs, suggesting that the existence of the basal lamina affects the survival of Nrf2-null MuSCs. Taken together, these results suggest that the basal lamina compensates for the loss of Nrf2, independent of the antioxidative roles of Nrf2. In addition, experimental conditions might explain the discrepant results of Nrf2-null regenerative ability.  相似文献   

7.
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 μm were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18–24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements. In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than ?82 mV, the intracellular free Mg2+ concentration was 3.8±0.41 (S.E.) mM (n=58) at 22°C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (?23±2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7±0.45 (S.E.) mM, n=6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

8.
9.
In humans, there are two skeletal muscle α‐actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in α‐actinin‐3 due to the common ACTN3 R577X polymorphism. The α‐actinins are an ancient family of actin‐binding proteins with structural, signalling and metabolic functions. The skeletal muscle α‐actinins diverged ~250–300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why α‐actinin‐2 cannot completely compensate for the absence of α‐actinin‐3. This paper focuses on the role of skeletal muscle α‐actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.  相似文献   

10.
Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle''s basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties.  相似文献   

11.
    
Rhabdomyosarcoma (RMS) is a paediatric soft-tissue sarcoma arising from skeletal muscle precursors coexpressing markers of proliferation and differentiation. Inducers of myogenic differentiation suppress RMS tumourigenic phenotype. The Notch target gene HES1 is upregulated in RMS and prevents tumour cell differentiation in a Notch-dependent manner. However, Notch receptors regulating this phenomenon are unknown. In agreement with data in RMS primary tumours, we show here that the Notch3 receptor is overexpressed in RMS cell lines versus normal myoblasts. Notch3-targeted downregulation in RMS cells induces hyper-phosphorylation of p38 and Akt essential for myogenesis, resulting in the differentiation of tumour cells into multinucleated myotubes expressing Myosin Heavy Chain. These phenomena are associated to a marked decrease in HES1 expression, an increase in p21(Cip1) level and the accumulation of RMS cells in the G1 phase. HES1-forced overexpression in RMS cells reverses, at least in part, the pro-differentiative effects of Notch3 downregulation. Notch3 depletion also reduces the tumourigenic potential of RMS cells both in vitro and in vivo. These results indicate that downregulation of Notch3 is sufficient to force RMS cells into completing a correct full myogenic program providing evidence that it contributes, partially through HES1 sustained expression, to their malignant phenotype. Moreover, they suggest Notch3 as a novel potential target in human RMS.  相似文献   

12.
13.
Skeletal muscles are rarely recruited maximally during movement. However, much of our understanding of muscle properties is based on studies using maximal activation. The effect of activation level on skeletal muscle properties remains poorly understood. Muscle optimum length increases with decreased activation; however, the mechanism responsible is unclear. Here, we attempted to determine whether length-dependent calcium effects, or the effect of absolute force underpin this shift. Fixed-end contractions were performed in frog plantaris muscles at a range of lengths using maximal tetanic (high force, high calcium), submaximal tetanic (low force, high calcium) and twitch (low force, low calcium) stimulation conditions. Peak force and optimum length were determined in each condition. Optimum length increased with decreasing peak force, irrespective of stimulation condition. Assuming calcium concentration varied as predicted, this suggests that absolute force, rather than calcium concentration, underpins the effect of activation level on optimum length. We suggest that the effect of absolute force is due to the varying effect of the internal mechanics of the muscle at different activation levels. These findings have implications for our understanding of in vivo muscle function and suggest that mechanical interactions within muscle may be important determinants of force at lower levels of activation.  相似文献   

14.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.  相似文献   

15.
依据Trinick-Eppenberger对鸡骨骼肌M蛋白的提取方法,由人骨骼肌中得到的M蛋白粗提物除含分子量为165000的M蛋白外,还含有分子量为185000和140000(C成分)的两组分。由于在粗提物中未发现分子量为90000的磷酸化酶,我们将最终纯化步骤中的亲和层析改为制备电泳,同样获得了纯化的M蛋白。  相似文献   

16.
    
Objective: To determine the impact of insulin resistance and obesity on muscle triacylglycerol (IMTG) and glycogen metabolism during and after prolonged exercise. Research Methods and Procedures: Female lean (fa/?; N = 40, ZL) and obese insulin-resistant (fa/fa; N = 40, ZO) Zucker rats performed an acute bout of swimming exercise (8 times for 30 minutes) followed by 6 hours of carbohydrate supplementation (CHO) or fasting (FAST). IMTG and glycogen were measured in the extensor digitorum longus (EDL) and red vastus lateralis (RVL) muscles. Results: Despite resting IMTG content being 4-fold higher in ZO compared with ZL rats, IMTG levels were unchanged in either EDL or RVL muscles immediately after exercise. Resting glycogen concentration in EDL and RVL muscles was similar between genotypes, with exercise resulting in glycogen use in both muscles from ZL rats (∼85%, p < 0.05). However, in ZO rats, there was a much smaller decrease in postexercise glycogen content in both EDL and RVL muscles (∼30%). During postexercise recovery, there was a decrease in EDL muscle levels of IMTG in ZL rats supplemented with CHO after 30 and 360 minutes (p < 0.05). In contrast, IMTG content was increased above resting levels in RVL muscles of ZO rats fasted for 360 minutes. Six hours of CHO refeeding restored glycogen content to resting levels in both muscles in ZL rats. However, after 6 hours of FAST in ZO animals, RVL muscle glycogen content was still lower than resting levels (p < 0.05). At this time, IMTG levels were elevated above basal (p < 0.05). Discussion: In both healthy and insulin-resistant skeletal muscle, there was negligible net IMTG degradation after a single bout of prolonged exercise. However, during postexercise recovery, there was differential metabolism of IMTG between phenotypes.  相似文献   

17.
Voltage-clamp experiments using the three-microelectrode voltage clamp technique were performed on ventroabdominal flexor muscles of the crustacean Atya lanipes. Potassium and chloride currents were found to underlie the normal, passive response of the muscle. Blocking potassium currents with tetraethylammonium and replacing chloride ions with methanesulfonate did not unmask an inward current. By treating the muscle with the sulfhydryl-alkylating agent 4-cyclopentene-1,3-dione an inward current was detected. The current induced by the agent is carried by Ca2+, since it is abolished in Ca(2+)-free solutions. The induced Ca2+ current is detected at about -40 mV and reaches a mean maximum value of -78 microA/cm2 at ca. -10 mV. At this potential the time to peak is close to 15 msec. The induced Ca2+ current inactivated with 1-sec prepulses which did not elicit detectable Ca2+ current; the fitted hx curve had a midpoint of -38 mV and a steepness of 5.0 mV. Measurements of isometric tension were performed in small bundles of fibers, and the effects of the sulfhydryl-alkylating agents 4-cyclopentene-1,3-dione and N-ethylmaleimide were investigated. Tetanic tension was enhanced in a strictly Ca(2+)-dependent manner by 4-cyclopentene-1,3-dione. The amplitude of K+ contractures increased after treatment with N-ethylmaleimide. It is concluded that Ca2+ channels are made functional by the sulfhydryl-specific reagents and that the increase in tension is probably mediated by an increase in Ca2+ influx through the chemically induced Ca2+ channels.  相似文献   

18.
Summary The mechanisms of allosteric regulation of the Ca-ATPases of cardiac and skeletal sarcoplasmic reticulum by ATP have been compared. Although both enzymes showed stimulation of ATPase activity by ATP, the cardiac enzyme did not show the plateau in ATPase activity at 10–100M ATP seen with the skeletal enzyme. Likewise the phosphoenzyme (EP) levels did not plateau with the cardiac enzyme as they did with the skeletal enzyme. The apparent negative cooperatively which was seen in the kinetics of ATP hydrolysis at low ATP concentrations was not due to negative cooperatively in substrate binding to either enzyme. The cardiac enzyme did show, however, much higher affinity for the ATP analog, AMPPCP, which helps explain how AMPPCP blocks ATPase activity in the cardiac enzyme and stimulates ATPase activity in the skeletal enzyme. Fluorescein isothiocyanate was used to determine if allosteric regulation takes place through site-site interactions in oligomers. The 1 to 1 ratio between AMPPCP binding sites and FITC binding sites eliminated allosteric regulation by effector sites in both enzymes. The allosteric mechanism which remained was one in which the active-site becomes an effector-site by the early departure of ADP in the reaction mechanism. The step stimulated by the binding of ATP at the active-site turned effector-site was a nonphosphorylated form of the enzyme in cardiac sarcoplasmic reticulum and a phosphorylated form in skeletal sarcoplasmic reticulum.Abbreviations AMPPCP Adenylyl Methylenediphosphonate - EGTA Ethyleneglycol Bis(amino-ethyl ether)-N,N,N,N Tetraacetic Acid - Pi Inorganic Phosphate - EP Phosphorylated Enzyme - FITC Fluorescein Isothiocyanate - MOPS 3-(N-morpholino)-Propanesulfonic Acid - v/EP ratio of calcium dependent ATPase activity to phosphoenzyme level - V initial rate of phosphoenzyme formation - LSSR Light Sarcoplasmic Reticulum - CSR Cardiac Sarcoplasmic Reticulum.  相似文献   

19.
microRNA在肌肉发育中的功能研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类非编码的小RNA分子,它通过对靶mRNA的翻译抑制和降解对基因表达起负调节作用。现在人们已经清楚地知道miRNA参与了增殖、分化、凋亡、发育等许多生物过程。一些miRNA在肌肉中特异表达,参与肌肉发育。该文重点介绍了参与肌肉发育的miRNA。已有证据表明肌肉miRNA在肌肉的增殖和分化过程中起了重要的调节作用,miRNA的调节异常和肌肉疾病有关。因此,miRNA是一类新的肌肉调控因子,它有可能成为畜禽肉产量提高和肌肉相关疾病治疗的新型靶标。  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号