首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil texture, as well as the presence of rocks, can determine the water status, growth, and distribution of plants in arid environments. The effects of soil rockiness and soil particle size distribution on shoot and root growth, root system size, rooting depth, and water relations were therefore investigated for the Crassulacean acid metabolism leaf succulent Agave deserti and the C(4) bunchgrass Pleuraphis rigida after precipitation events during the summer and winter/spring rainfall periods in the northwestern Sonoran Desert. The soils at the field site varied from sandy (<3% rocks by volume) to rocky (up to 35% rocks), with greater water availability at higher water potentials for sandy than for rocky soils. Although A. deserti was absent from the sandiest sites, its shoot and root growth during both rainfall periods were greatest in comparatively sandier sites and decreased as the soil rock content increased. Furthermore, A. deserti had twofold greater root surface area, root?:?leaf area ratio, and mean rooting depth at sandier than at rocky sites. As for A. deserti, shoot growth was greater for P. rigida at the sandier sites than at the rockier sites, even though its root surface area and mean rooting depth did not vary significantly. After early spring rainfall events, the leaf water potential for A. deserti did not differ between rocky and sandy sites, but transpiration rates were almost twofold greater at rocky than at sandy sites. During the same period, P. rigida had lower leaf water potentials and 25% lower transpiration rates at rocky than at sandy sites. The greater variability in the deployment of the root systems of A. deserti in response to soil rockiness may reflect its evergreen habit and slower growth, which allow it to endure periods of lower water availability than does P. rigida, whose leaves die during drought.  相似文献   

2.
Loss of axial hydraulic conductance as a result of xylem cavitation was examined for roots of the Crassulacean acid metabolism (CAM) succulents Agave deserti and Opuntia ficus-indica. Vulnerability to cavitation was not correlated with either root size or vessel diameter. Agave deserti had a mean cavitation pressure of -0.93 ± 0.08 MPa by both an air-injection and a centrifugal method compared to -0.70 ± 0.02 MPa by the centrifugal method for O. ficus-indica, reflecting the greater tolerance of the former species to low water potentials in its native habitat. Substantial xylem cavitation would occur at a soil water potential of -0.25 MPa, resulting in a predicted 22% loss of conductance for A. deserti and 32% for O. ficus-indica. For an extended drought of 3 mo, further cavitation could cause a 69% loss of conductance for A. deserti and 62% for O. ficus-indica. A model of axial hydraulic flow based upon the cavitation response of these species predicted that water uptake rates are far below the maximum possible, owing to the high root water potentials of these desert succulents. Despite various shoot adaptations to aridity, roots of A. deserti and O. ficus-indica are highly vulnerable to cavitation, which partially limits water uptake in a wet soil but helps reduce water loss to a drying soil.  相似文献   

3.
Plants of the desert succulent Agave deserti were grown in partitionedcontainers to determine whether heterogeneity in soil moistureleads to differences in cellular development and hydraulic conductivityalong individual roots. Roots from containers with a dry distalcompartment (furthest from the shoot), a wet middle compartment,and a dry proximal compartment had distal regions (includingthe root tips) that were more suberized and lignified in theendodermis and adjacent cell layers than were root regions fromthe wet middle compartment. Proximal root regions about 40 mmfrom the succulent shoot base were also relatively unsuberized,suggesting that both external and internal supplies of waterdelayed tissue maturation. Root segments from wet middle compartmentsand from dry proximal compartments had higher hydraulic conductivitythan did the more suberized root segments from dry distal compartments.Unlike distal root segments from wet compartments, segmentsfrom dry compartments suffered no decrease in hydraulic conductivityafter immersion in mercuric chloride, suggesting that aquaporinactivity diminished for roots during drought. The possible closureof water channels could help limit root water loss to a dryingsoil. The delayed development of suberized cell layers may allowroot regions to maximize water uptake from wet soil patches(such as under rocks), and the relatively immature, absorptiveroot region near the base of the shoot may help A. deserti capturewater from a briefly wetted surface soil. Copyright 2000 Annalsof Botany Company Agave deserti, root plasticity, water uptake, aquaporins, suberization, endodermis, divided pots.  相似文献   

4.
Storage of phosphorus (P) in stem tissue is important in Mediterranean Proteaceae, because proteoid root growth and P uptake is greatest during winter, whereas shoot growth occurs mostly in summer. This has prompted the present investigation of the P distribution amongst roots, stems, and leaves of Hakea prostrata R.Br. (Proteaceae) when grown in nutrient solutions at ten P-supply rates. Glasshouse experiments were carried out during both winter and summer months. For plants grown in the low-P range (0, 0.3, 1.2, 3.0, or 6.0 micromol d(-1)) the root [P] was > stem and leaf [P]. In contrast, leaf [P] > stem and root [P] for plants grown in the high-P range (6.0, 30, 60, 150, or 300 micromol P d(-1)). At the highest P-supply rates, the capacity for P storage in stems and roots appears to have been exceeded, and leaf [P] thereafter increased dramatically to approximately 10 mg P g(-1) dry mass. This high leaf [P] was coincident with foliar symptoms of P toxicity which were similar to those described for many other species, including non-Proteaceae. The published values (tissue [P]) at which P toxicity occurs in a range of species are summarized. X-ray microanalysis of frozen, full-hydrated leaves revealed that the [P] in vacuoles of epidermal, palisade and bundle-sheath cells were in the mM range when plants were grown at low P-supply, even though very low leaf [P] was measured in bulk leaf samples. At higher P-supply rates, P accumulated in vacuoles of palisade cells which were associated with decreased photosynthetic rates.  相似文献   

5.
Desert succulents resume substantial water uptake within 1–2 d of the cessation of drought, but the changes in root structure and hydraulic conductivity underlying such recovery are largely unknown. In the monocotyledonous leaf succulent Agave deserti Engelm. substantial root mortality occurred only for lateral roots near the soil surface; nearly all main roots were alive at 180 d of drought. New main roots were initiated and grew up to 320 mm at soil water potentials lower than – 5·0 MPa, utilizing water from the shoot. The hydraulic conductivity of distal root regions decreased 62% by 45 d of drought and 70% thereafter. After 7 d of rewetting, root hydraulic conductivity was restored following 45 d of drought but not after 90 and 180 d. The production of new lateral roots and the renewed apical elongation of main roots occurred 7–11 d after rewetting following 180 d of drought. Hydraulic conductivity was higher in the distal region than at midroot and often increased again near the root base, where many endodermal cells lacked suberin lamellae. Suberization and xylem maturation were influenced by the availability of moisture, suggesting that developmental plasticity along a root allows A. deserti to capitalize on intermittent or heterogeneous supplies of water.  相似文献   

6.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

7.
Global warming will increase heat waves, but effects of abrupt heat stress on shoot–root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab = 5.5 days at daytime of 30 + 5 or 10 °C; field = 5 days at ambient (up to 32 °C daytime) vs. ambient +10 °C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. 13C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil 15N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10 cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.  相似文献   

8.
Summary The influence of irrigation and nitrogen fertilization in early summer on root and shoot growth of Atriplex confertifolia, a C4 shrub species, was examined in a cold-winter desert community in northern Utah. Soil water and xylem pressure potentials were monitored during the summer period.At the time of watering the surface soil (0–30 cm) was dry but there were turgid fine roots in this horizon. Watering of the soil reduced plant water stress from-30 to-15 bars (dawn values) indicating that roots near the surface were capable of absorbing water, and induced root growth in the 0–30 cm zone. The addition of N to the water treatment did not further increase root production. However, watering and watering +N fertilizer failed to stimulate shoot elongation or any dry weight increase of shoots. This shoot dormancy during summer is not typical of C4 plants and is probably associated with adaptation to the cool arid environment.This work was carried out while the senior author was on study leave from CSIRO  相似文献   

9.
To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.Published as Florida Agricultural Experimental Station Journal Series No. R-02576  相似文献   

10.
Young seedlings ofGmelina arborea Roxb. were subjected to 2 weeks of drought. Despite the gradual reduction in stomatal conductance, leaf and root growth was not affected until the later part of the stress period. This was attributed to solute adjustment in the roots of the plants. As the severity of water stress increased, root growth was prolific in all the soil segments. As a result, water in the lowest soil segment was used to maintain plant turgor, which in turn sustains the leaf and root growth during the water-stress treatment. The influence of soil water content and soil water potential upon soil water uptake rate was also evaluated on soil profile basis. Rates of extraction began to decline in all soil segments as soon as soil water potential fell below -0.06 MPa, presumably as a result of vapour gaps between the root and soil (root: soil interface resistance). It is suggested that the growth of roots ofGmelina plants away from drying soil will minimize the resistance to water uptake.  相似文献   

11.
Niche partitioning of resources by plants is believed to be a fundamental aspect of plant coexistence and biogeochemical cycles; however, measurements of the timing and location of resource use are often lacking because of the difficulties of belowground research. To measure niche partitioning of soil water by grasses, planted saplings, and trees in a mesic savanna (Kruger National Park, South Africa), we injected deuterium oxide into 102,000 points in 15, 154-m2 plots randomly assigned to one of five depths (0–120 cm) and one of three time periods during the 2008/2009 growing season. Grasses, saplings and trees all demonstrated an exponential decline in water uptake early in the season when resources were abundant. Later in the season, when resources were scarce, grasses continued to extract the most water from the shallowest soil depths (5 cm), but saplings and trees shifted water uptake to deeper depths (30–60 cm). Saplings, in particular, rapidly established roots to at least 1 m and used these deep roots to a greater extent than grasses or trees. Helping to resolve contradictory observations of the relative importance of deep and shallow roots, our results showed that grasses, saplings and trees all extract the most water from shallow soils when it is available but that woody plants can rapidly shift water uptake to deeper soils when resources are scarce. Results highlight the importance of temporal changes in water uptake and the problems with inferring spatial and temporal partitioning of soil water uptake from root biomass measurements alone.  相似文献   

12.
Water relations, xylem embolism, root and shoot hydraulic conductance of both young plants in the field and potted seedlings of Quercus pubescens have been studied with the aim of investigating whether these variables may account for the well known adaptation of this oak species to arid habitats. Our data revealed that Q. pubescens is able to maintain high leaf relative water contents under water stress conditions. In fact, relative water contents measured in summer (July) did not differ from those recorded in April. This was apparently achieved by compensating water loss by an equal amount of water uptake. Such a drought avoidance strategy was made possible by the recorded high hydraulic efficiency of stems and roots under water stress. In fact, root hydraulic conductance of field-grown plants was maintained high in summer when the percentage loss of hydraulic conductance of stems was lowest. The hydraulic architecture of young plants of Q. pubescens measured in terms of partitioning of hydraulic resistances along the water pathway revealed that the highest hydraulic resistance was located in stems of the current year's growth. This hydraulic architecture is interpreted as consistent with the adaptation of Q. pubescens to arid habitats as a consequence of the recorded seasonal changes in water relation parameters as well as in root and stem hydraulics.  相似文献   

13.
Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders (Cistus monspeliensis and Cistus ladanifer) and resprouters (Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean communities.  相似文献   

14.
Suboptimal levels of phosphorus (P) strongly inhibited leaf expansion in young cotton (Gossypium hirsutum L.) plants during the daytime, but had little effect at night. The effect of P was primarily on cell expansion. Compared to plants grown on high P, plants grown on low P had lower leaf water potentials and transpiration rates, and greater diurnal fluctuations in leaf water potential. Hydraulic conductances of excised root systems and of intact transpiring plants were determined from curves relating water flow rate per unit root length to the pressure differential across the roots. Both techniques showed that low P significantly decreased root hydraulic conductance. The effects of P nutrition on hydraulic conductance preceded effects on leaf area. Differences in total root length, shoot dry weight, and root dry weight all occurred well after the onset of differences in leaf expansion. The data strongly indicate that low P limits leaf expansion by decreasing the hydraulic conductance of the root system.  相似文献   

15.
Pate  John S.  Jeschke  W. Dieter 《Plant and Soil》1993,155(1):273-276
Xylem sap of sinker (tap) root, cluster feeding roots, lateral roots and from an age series of main stem extensions of 6-year trees of Banksia prionotes was collected and analyzed for principal organic and inorganic solutes. During the phase of root uptake activity in winter and spring, cluster roots were principal xylem donors of malate, phosphate, chloride, sodium, potassium and amino acid N whereas other parts of the root served as major sources to the shoot of other cations, nitrate and sulphate. Sinker root xylem sap was at all times less concentrated in solutes than that of lateral roots into which cluster roots were voiding exported solutes. Phosphate was abstracted from xylem by stem tissue during winter and it and a range of other solutes released back to xylem immediately prior to extension growth of the shoot in summer. Phloem sap collected from mid regions of stems was unusually low in potassium and phosphate relative to chloride and sulphate in comparison with phloem sap of other species, and its low potassium: sodium ratio relative to xylem indicated poor discrimination against sodium during phloem loading. Data are discussed in relation to the asynchronous seasonal cycles of nutrient uptake and shoot growth.  相似文献   

16.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

17.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

18.
The effects of drought stress on the phosphorus (P) and potassium (K) uptake dynamics of summer maize (Zea mays L.) throughout the growth cycle were studied. Field trials were conducted under a completely randomized design with three field water capacity (FC) regimes: 75?% FC was well watered and considered to be the control, 55?% FC represented moderate stress (MS), and 35?% FC represented severe stress (SS). The water regimes were applied from the third leaf stage until maturity. Drought stress induced sharp decreases in total K and P uptake of maize organs at different developmental stages and, in particular, detrimentally affected the nutrient uptake capability of roots. SS caused more deleterious effect than MS on both total K and P uptake by plant organs. The results suggested maize plants differ in their ability to maintain nutrient uptake under drought stress, and it is highly dependent on the intensity and duration of drought stress and the developmental stage. The decrease in total K and P uptake caused by both MS and SS was accompanied by reduction in biomass production in drought-stressed tissues. The biomass allocation patterns in response to drought stress fluctuated strong mostly because of competitive changes in the shoot and roots at different stages, thus the root:shoot ratio increased at some stages and decreased at other stages. SS induced a dramatic reduction in the harvest index (HI), whereas MS slightly decreased HI. Thus, water limitation caused lower K and P uptake and HI.  相似文献   

19.
 以夏玉米(Zea mays L.)(陕单9号)为供试材料,采用置于遮雨棚下的模拟土柱的方法,进行了不同灌溉施肥深度对夏玉米生长发育、地上与地下部分同化物分配、产量及水分利用效率的影响的试验研究。灌溉施肥深度分4个处理:表面灌施;20 cm 深度灌水施肥;30 cm 深度灌水施肥和40 cm深度灌水施肥。后3个处理为土表下灌施处理。4个重复。试验结果表明:土表下灌施抑制了玉米生育早期的地上部分生长,使根系向土壤中下层的分布加强,从而保证了作物中后期对水分养分的吸收利用,提高了水分利用效率。在本试验条件下,玉  相似文献   

20.
A technique used for hydroponics was adapted to measure instantaneousroot water uptake from the soil for a leaf succulent CAM species,Agave deserti. Comparisons were made to previously modelledwater fluxes for A. deserti and to Encelia farinosa, a non-succulentC3species. Net CO2uptake and transpiration forA. deserti underwell-watered conditions occurred primarily at night whereasroot water uptake was relatively constant over 24 h. Leaf thicknessdecreased when transpiration commenced and then increased whenrecharge from the stem and soil occurred, consistent with previousmodels. A drought of 90 d eliminated net CO2uptake and transpirationand reduced the water content of leaves by 62%. Rewetting theentire root system for 7 d led to a full recovery of leaf waterstorage but only 56% of maximal net CO2uptake. Root water uptakewas maximal immediately after rewetting, which replenished rootwater content, and decreased to a steady rate by 14 d. Whenonly the distal 50% of the root system was rewetted, the timefor net CO2uptake and leaf water storage to recover increased,but by 30 d gas exchange and leaf water storage were similarto 100% rewetting. Rewetting 10 or 20% of the root system resultedin much less water uptake; these plants did not recover leafwater storage or gas exchange by 30 d after rewetting. A redundancyin the root system of A. deserti apparently exists for dailywater uptake requirements under wet conditions but the entireroot system is required for rapid recovery from drought.Copyright1999 Annals of Botany Company Agave deserti Engelm., desert, drought, gas exchange, rewetting, roots, succulent, water uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号