首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of hominin growth and life history has long been a subject of intensive research, but it is only recently that paleoanthropologists have considered the ontogenetic basis of human morphological evolution. To date, most human EvoDevo studies have focused on developmental patterns in extant African apes and humans. However, the Old World monkey tribe Papionini, a diverse clade whose members resemble hominins in their ecology and population structure, has been proposed as an alternative model for human craniofacial evolution. This paper reviews prior studies of papionin development and socioecology and presents new analyses of juvenile shape variation and ontogeny to address fundamental questions concerning primate cranial development, including: (1) When are cranial shape differences between species established? (2) How do epigenetic influences modulate early-arising pattern differences? (3) How much do postnatal developmental trajectories vary? (4) What is the impact of developmental variation on adult cranial shape? and, (5) What role do environmental factors play in establishing adult cranial form? Results of this inquiry suggest that species differences in cranial morphology arise during prenatal or earliest postnatal development. This is true even for late-arising features that develop under the influence of epigenetic factors such as mechanical loading. Papionins largely retain a shared, ancestral pattern of ontogenetic shape change, but large size and sexual dimorphism are associated with divergent developmental trajectories, suggesting differences in cranial integration. Developmental simulation studies indicate that postnatal ontogenetic variation has a limited influence on adult cranial morphology, leaving early morphogenesis as the primary determinant of cranial shape. The ability of social factors to influence craniofacial development in Mandrillus suggests a possible role for phentotypic plasticity in the diversification of primate cranial form. The implications of these findings for taxonomic attribution of juvenile fossils, the developmental basis of early hominin characters, and hominin cranial diversity are discussed.  相似文献   

2.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

3.
To better understand what directs and limits the evolution of phenotype, constraints in the realization of the optimal phenotype need to be addressed. That includes estimations of variability of adaptively important traits as well as their correlation structures, but also evaluation of how they are affected by relevant environmental conditions and development phases. The aims of this study were to analyze phenotypic plasticity, genetic variability and correlation structures of important Iris pumila leaf traits in different light environments and ontogenetic phases, and estimate its evolutionary potential. Stomatal density, specific leaf area, total chlorophyll concentration and chlorophyll a/b ratio were analyzed on I. pumila full‐sib families in the seedling phase and on the same plants after 3 years of growth in contrasting light conditions typical for ontogenetic stage in question. There was a significant phenotypic plasticity in both ontogenetic stages, but significant genetic variability was detected only for chlorophyll concentrations. Correlations of the same trait between different stages were weak due to changes in environmental conditions and difference in ontogenetic reaction norms of different genotypes. Ontogenetic variability of correlation structures was detected, where correlations and integration were higher in seedlings compared with adult plants 3 years later. Correlations were affected by environmental conditions, with integration being higher in the lower light conditions, but correlations between phases being stronger in the higher light treatment. These findings demonstrated that the analyzed traits can be selected and can mostly evolve independently in different environments and ontogenetic stages, with low genetic variability as a potentially main constraint.  相似文献   

4.
The developmental origin of phenotypic plasticity in morphological shape can be attributed to environment-specific changes in growth of overall body size, localized growth of a morphological structure or a combination of both. I monitored morphological development in the first four nymphal instars of grasshoppers (Melanoplus femurrubrum) raised on two different plant diets to determine the ontogenetic origins of diet-induced phenotypic plasticity and to quantify genetic variation for phenotypic plasticity. I measured diet-induced phenotypic plasticity in body size (tibia length), head size (articular width and mandible depth) and head shape (residual articular width and residual mandible depth) for grasshoppers from 37 full-sib families raised on either a hard plant diet (Lolium perenne) or a soft plant diet (Trifolium repens). By the second to third nymphal instar, grasshoppers raised on a hard plant diet had significantly smaller mean tibia length and greater mean residual articular width (distance between mandibles adjusted for body size) compared with full-sibs raised on a soft plant diet. However, there was no significant phenotypic plasticity in mean unadjusted articular width and mandible depth, and in mean residual mandible depth. At the population level, development of diet-induced phenotypic plasticity in grasshopper head shape is mediated by plastic changes in allocation to tissue growth that maintain growth of head size on hard, low-nutrient diets while reducing growth of body size. Within the population, there was substantial variation in the plasticity of growth trajectories since different full-sib families developed phenotypic plasticity of residual articular width through different combinations of head and body size growth. Genetic variation for diet-induced phenotypic plasticity of residual articular width, residual mandible depth and tibia length, as estimated by genotype–environment interaction, exhibited significant fluctuation through ontogeny (repeated measures MANOVA , family × plant × instar, P < 0.01). For example, there was significant genetic variation for phenotypic plasticity of residual articular width in the third nymphal instar, but not earlier or later in ontogeny. The observed patterns of genetic variation are discussed with reference to short-term constraints and the evolution of phenotypic plasticity.  相似文献   

5.
Sex expression (the proportions of staminate and hermaphrodite flowers produced) in andromonoecious Solarium hirtum is phenotypically plastic, and there is genetic variation for sex expression plasticity. Changes in sex expression phenotype are inherently the result of altered development. However, the underlying developmental components of sex expression plasticity and of differences in plasticity among genotypes are unknown. This study takes an explicitly genetic and developmental approach to the study of phenotypic plasticity and examines changes in sex expression of ten clonally replicated genotypes at three levels of organization: among inflorescences, within inflorescences, and at the level of developing floral meristems. Changes in sex expression of individuals and differences among individuals are the result of a predictable interplay of resource, architectural, and floral level response within the hierarchical construction of the shoot system. Phenotypic plasticity of whole plant sex expression is ultimately due to sexual lability of individual developing flowers: floral sex is not determined until a primordium size of 9–10 mm. Until that time, sex expression remains labile and developing floral primordia can respond to changes in plant resource status. This flower level developmental lability, however, is expressed within the constraints set by the architecture and ontogenetic history of the organism. Only those floral primordia produced in distal portions of each inflorescence are labile, capable of developing into either a staminate or hermaphrodite flower, whereas those primordia in basal positions invariably develop as hermaphrodite flowers. The genotypes differ with respect to the architectural components of phenotypic plasticity and it is this architectural variation that results in differences in plasticity among genotypes. The phenomenon, in which the developmental fate of a primordium depends upon where and when it is produced within the architecture of an organism and what events have preceded it during ontogeny, can be termed “ontogenetic contingency.”  相似文献   

6.
While it is commonplace for biologists to use the response to environmental manipulation as a guide to evolutionary responses to selection, the relationship between phenotypic plasticity and genetic change is not generally well-established. The life-histories of laboratory Drosophila populations are among the few experimental systems which simultaneously afford information on phenotypic plasticity and evolutionary trajectories. We employed a combination of two replicated selectively differentiated stocks (postponed aging stocks and their controls; 10 populations in total) and two different environmental manipulations (nutrition and mating) to explore the empirical relationship between phenotypic plasticity and evolutionary trajectories. While there are a number of parallels between the results obtained using these two approaches, there are important differences. In particular, as the detail of the biological characterization of either type of response increases, so their disparities multiply. Nonetheless, the combination of environmental manipulation with evolutionary divergence provides valuable information about the biological connections between life-history, caloric reserves, and reproductive physiology in Drososphila.  相似文献   

7.
Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.  相似文献   

8.
Individual variation in growth is high in cooperative breeders and may reflect plastic divergence in developmental trajectories leading to breeding vs. helping phenotypes. However, the relative importance of additive genetic variance and developmental plasticity in shaping growth trajectories is largely unknown in cooperative vertebrates. This study exploits weekly sequences of body mass from birth to adulthood to investigate sources of variance in, and covariance between, early and later growth in wild meerkats (Suricata suricatta), a cooperative mongoose. Our results indicate that (i) the correlation between early growth (prior to nutritional independence) and adult mass is positive but weak, and there are frequent changes (compensatory growth) in post‐independence growth trajectories; (ii) among parameters describing growth trajectories, those describing growth rate (prior to and at nutritional independence) show undetectable heritability while associated size parameters (mass at nutritional independence and asymptotic mass) are moderately heritable (0.09 ≤ h2 < 0.3); and (iii) additive genetic effects, rather than early environmental effects, mediate the covariance between early growth and adult mass. These results reveal that meerkat growth trajectories remain plastic throughout development, rather than showing early and irreversible divergence, and that the weak effects of early growth on adult mass, an important determinant of breeding success, are partly genetic. In contrast to most cooperative invertebrates, the acquisition of breeding status is often determined after sexual maturity and strongly impacted by chance in many cooperative vertebrates, who may therefore retain the ability to adjust their morphology to environmental changes and social opportunities arising throughout their development, rather than specializing early.  相似文献   

9.
Trait variation is normally separated into genetic and environmental components, yet genetic factors also control the expression of environmental variation, encompassing plasticity across environmental gradients and within‐environment responses. We defined four components of environmental variation: plasticity across environments, variability in plasticity, variation within environments, and differences in within‐environment variation across environments. We assessed these components for cold tolerance across five rearing temperatures using the Drosophila melanogaster Genetic Reference Panel (DGRP). The four components were found to be heritable, and genetically correlated to different extents. By whole genome single marker regression, we detected multiple candidate genes controlling the four components and showed limited overlap in genes affecting them. Using the binary UAS‐GAL4 system, we functionally validated the effects of a subset of candidate genes affecting each of the four components of environmental variation and also confirmed the genetic and phenotypic correlations obtained from the DGRP in distinct genetic backgrounds. We delineate selection targets associated with environmental variation and the constraints acting upon them, providing a framework for evolutionary and applied studies on environmental sensitivity. Based on our results we suggest that the traditional quantitative genetic view of environmental variation and genotype‐by‐environment interactions needs revisiting.  相似文献   

10.
Deceit‐pollinated orchid species show substantial variation in floral traits, which may be maintained by genetic drift or various forms of selection, or may reflect phenotypic plasticity. We explored how much plasticity occurs in both vegetative and floral traits of Tolumnia variegata (Oncidiinae, Orchidaceae) across two different light environments in Puerto Rico using data from a reciprocal transplant experiment. We also examined how fruit set, a measure of reproductive success and a surrogate for fitness, is associated with this morphological variation, and whether it changes over time. Tolumnia variegata responded to environmental variables in multiple ways. Vegetative characters were more plastic than those associated with sexual reproduction. Transplant effects accounted for significant variation in flower length, lip length, number of inflorescences, peduncle length, leaf length and the total number of ramets, but responses were not always consistent among years. Phenotypic selection on morphological characters was dependent on plant location. The trends detected were complex, and often inconsistent across years, probably as a result of wetter and drier years than average. Overall fruit set was quite variable among plants, averaging 15%, with no significant differences among sun and shade plants. Although reproductive success was similar among sites, habitat heterogeneity and annual variation had an effect on morphological expression, which sometimes modified the trajectories of phenotypic selection. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 431–446.  相似文献   

11.
It has been demonstrated that phenotypic plasticity and genotype by environment interaction are important for coping with new and heterogeneous environments during invasions. Zaprionus indianus Gupta (Diptera: Drosophilidae) is an Afrotropical invasive fly species introduced to the South American continent in 1999. This species is generalist and polyphagous, since it develops and feeds in several different fruit species. These characteristics of Z. indianus suggest that phenotypic plasticity and genotype by environment interaction may be important in this species invasion process. In this sense, our aim was to investigate the role of genetic variation for phenotypic plasticity (genotype by environment interaction) in Z. indianus invasion of the South American continent. Specifically, we quantified quantitative genetic variation and genotype by environment interactions of morphological and life history traits in different developmental environments, that is, host fruits. This was done in different populations in the invasive range of Z. indianus in Argentina. Results showed that Z. indianus populations have considerable amounts of quantitative genetic variation. Also, genotype by environment interactions was detected for the different traits analyzed in response to the different developmental environments. Interestingly, the amounts and patterns of these parameters differed between populations. We interpreted these results as the existence of differences in evolutionary potential between populations that have an important role in the short‐ and long‐term success of the Z. indianus invasion process.  相似文献   

12.
Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought.  相似文献   

13.
Gene regulation,quantitative genetics and the evolution of reaction norms   总被引:12,自引:0,他引:12  
Summary The ideas of phenotypic plasticity and of reaction norm are gaining prominence as important components of theories of phenotypic evolution. Our understanding of the role of phenotypic plasticity as an adaptation of organisms to variable environments will depend on (1) the form(s) of genetic and developmental control exerted on the shape of the reaction norm and (2) the nature of the constraints on the possible evolutionary trajectories in multiple environments. In this paper we identify two categories of genetic control of plasticity: allelic sensitivity and gene regulation. These correspond generally to two classes of response by the developmental system to environmental change: phenotypic modulation, in which plastic responses are a continuous and proportional function of environmental stimuli and developmental conversion, where responses tend to be not simply proportional to the stimuli. We propose that control of plasticity by regulatory actions has distinct advantages over simple allelic sensitivity: stability of phenotypic expression, capacity for anticipatory response and relaxation of constraints due to genetic correlations. We cite examples of the extensive molecular evidence for the existence of environmentally-cued gene regulation leading to developmental conversion. The results of quantitative genetic investigations on the genetics and evolution of plasticity, as well as the limits of current approaches are discussed. We suggest that evolution of reaction norms would be affected by the ecological context (i.e. spatial versus temporal variation, hard versus soft selection, and fine versus coarse environmental grain). We conclude by discussing some empirical approaches to address fundamental questions about plasticity evolution.  相似文献   

14.
The developmental reaction norm (DRN) represents the set of ontogenetic trajectories that can be produced by a genotype exposed to different environmental conditions. Genetic variation in the DRN for growth traits and in the patterns of biomass allocation is critical to phenotypic evolution in heterogeneous environments. The DRN and patterns of biomass allocation were investigated in 11 clones of the caespitose, corm-forming, perennial grass Phleum pratense in relation to competitive stress imparted by Lolium perenne in a 16 week glasshouse experiment. A separate experiment assessed the ability of basal buds flanking a corm to sprout and the relationship of corm mass to sprout mass for the same clones. Corm fresh mass varied among clones and was significantly correlated with the dry mass of the tillers that sprouted from basal buds. In the competition experiment, clones in competitive environments varied significantly from those in non-competetive environments in terms of their DRNs for number of tillers and shoot dry mass. Thus, selection of DRNs would favour different genotypes in the two environments and at different times. Significant negative genetic correlations were detected for tiller number and mean tiller mass in the noncompetitive, but not the competitive, environment. Biomass allocation to stem bases was significantly greater for clones under competitive stress. Allocation to storage tissues such as corms may be adaptive if it enhances persistence in the competitive field environments typically occupied by caespitose grasses. Root and shoot allocation showed a significant clone by competition interaction. For P. pratense, genotypic variation in growth trajectories plays an important role in determining variation in individual performance, a condition necessary for the continued evolution of the DRN.  相似文献   

15.
Allocation to reproductive mode (sexual and asexual) can vary depending on environmental conditions but is often examined at the population level, whereas selection acts upon the individual. We examined individual variation in reproductive mode to identify how the interaction of sex and the environment affect population genetic diversity. Using the plant Marchantia inflexa, we tested whether reproductive allocation pattern varies consistently between males and females and among plants collected from different environments, and determined if morphological responses were the result of individual plasticity or genetic differences. We then quantified genetic variability between the different environments and between the sexes. Male and female plants were collected from two strikingly different habitats within the same region: along natural sites (rivers) and along novel human-modified sites (roadsides). Using a common garden approach, we found a strong sex by habitat interaction: male and female responses differed significantly by their source habitat. For females, relative to river-collected, road-collected plants had higher growth and asexual reproduction, while the pattern was reversed, although not significant, for males. Genetic differentiation was significant between the two habitats with no evidence of individual differences in plasticity for growth, but there was a genotype effect for asexual propagule production. Males and females did not differ genetically; but river-collected plants with lower sexual potential were more diverse than roadside-collected plants, possibly the result of founder events. These results show that individual variation in reproduction is controlled by the interaction of both the environment and genetics. Due to different selection pressures between natural and novel habitats, there are observable differences in life history traits with an associated evolutionary response to the novel habitat.  相似文献   

16.
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.  相似文献   

17.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

18.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

19.
Environmental conditions such as temperature and water velocity may induce changes among alternative developmental pathways, i.e. phenotypic responses, in vertebrates. However, the extent to which the environment induces developmental plasticity and integrated developmental responses during early ontogeny of fishes remains poorly documented. We analyzed the responses of newly hatched Arctic charr (Salvelinus alpinus) to four experimental water velocities during 100 days of development. To our knowledge, this work is the first to analyze developmental plasticity responses of body morphology to an experimental gradient of water velocities during early ontogeny of fish. Arctic charr body size and shape responses show first, that morphometric traits display significant differences between low and high water velocities, thus revealing directional changes in body traits. Secondly, trait variation allows the recognition of critical ontogenetic periods that are most responsive to environmental constraints (40-70 and 80-90 days) and exhibit different levels of developmental plasticity. This is supported by the observation of asynchronous timing of variation peaks among treatments. Third, morphological interaction of traits is developmentally plastic and time-dependent. We suggest that developmental responses of traits plasticity and interaction at critical ontogenetic periods are congruent with specific environmental conditions to maintain the functional integrity of the organism.  相似文献   

20.
Ongoing climate change has forced animals to face changing thermal and nutritional environments. Animals can adjust to such combinations of stressors via plasticity. Body size is a key trait influencing organismal fitness, and plasticity in this trait in response to nutritional and thermal conditions varies among genetically diverse, locally adapted populations. The standing genetic variation within a population can also influence the extent of body size plasticity. We generated near-isogenic lines from a newly collected population of Drosophila melanogaster at the mid-point of east coast Australia and assayed body size for all lines in combinations of thermal and nutritional stress. We found that isogenic lines showed distinct underlying patterns of body size plasticity in response to temperature and nutrition that were often different from the overall population response. We then tested whether plasticity in development time could explain, and therefore regulate, variation in body size to these combinations of environmental conditions. We selected five genotypes that showed the greatest variation in response to combined thermal and nutritional stress and assessed the correlation between response of developmental time and body size. While we found significant genetic variation in development time plasticity, it was a poor predictor of body size among genotypes. Our results therefore suggest that multiple developmental pathways could generate genetic variation in body size plasticity. Our study emphasizes the need to better understand genetic variation in plasticity within a population, which will help determine the potential for populations to adapt to ongoing environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号