首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male‐sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male‐sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male‐sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male‐sterility allele occurs in the parent species and the hybrid zone. These rare male‐sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male‐sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.  相似文献   

2.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

3.
The transition from biotic to abiotic pollination was investigated using Schiedea, a genus exhibiting a remarkable diversity of inflorescence architecture associated with pollination biology. Heritabilities and genetic correlations of inflorescence traits were estimated in gynodioecious Schiedea salicaria (Caryophyllaceae), a species that has likely undergone a recent transition to wind-pollination. Using a partial diallel crossing design, significant narrow-sense heritabilities were detected for inflorescence condensation (h2 = 0.56 to 0.68 in the two sexes) and other traits related to the extent of wind pollination in Schiedea species. Heritabilities were generally higher in hermaphrodites than in females. Strong genetic correlations may constrain the evolution of some inflorescence traits that facilitate wind pollination, such as simultaneous shortening of inflorescence length and elongation of the subtending internode. The presence of significant narrow-sense heritabilities for traits associated with wind pollination suggests, however, that selection for more effective wind pollination in the windy, pollinator-limited environments where S. salicaria grows could lead to the evolution of the highly condensed inflorescences characteristic of other wind-pollinated species of Schiedea.  相似文献   

4.
Abstract The evolution of dioecy was studied in Schiedea (Caryophyllaceae), a genus endemic to the Hawaiian Islands. Eight of the 22 species are diclinous, possessing gynodioecious, subdioecious, or dioecious breeding systems. A biogeographic analysis of the genus indicates that the ancestor of Schiedea colonized early in the history of the Hawaiian Islands. Subsequently, hermaphroditic species appear to have engaged in inter-island colonization more frequently than diclinous species. For this reason, single-island endemism and dicliny are more common on the older Hawaiian Islands. Strong inbreeding depression was detected in three species of Schiedea , indicating that genetic factors have played a role in the evolution of dicliny. Depending on the level of natural selfing, the expression of inbreeding depressioin may have favored the outcrossed progeny of rare females in populations, and eventually the evolution of dioecy. In contrast to evidence for inbreeding depression, there was very little evidence that resource allocation, sex lability, or habitat partitioning have played an important role in the evolution of dioecy. In subdioecious S. globosa hermaphrodites were largely male in function, and in gynodioecious S. salicaria females and hermaphrodites were equivalent in nearly all aspects of female function that could be measured. Variation in breeding systems in Schiedea and the closely related Alsinidendron may result from the past history of population bottlenecks that have resulted in varying levels of inbreeding depression.  相似文献   

5.
We compared inbreeding depression in hermaphroditic Schiedea lydgatei and its gynodioecious sister species, S. salicaria, to infer the level of inbreeding depression in their common ancestor. With measurements of selfing rates, this information can be used to assess the importance of inbreeding depression in the evolution of breeding systems in S. lydgatei and S. salicaria. Morphological and physiological characters related to fitness were compared for inbred and outcrossed S. lydgatei in high- and low-fertilizer environments in the greenhouse. Seed mass, number of seeds per capsule, germination, survival, biomass, number of flowers, and age at first flowering were compared for inbred versus outcrossed progeny. We also measured inbreeding depression in maximal rates of photosynthetic carbon assimilation and stomatal conductance to water vapor, traits that affect fitness through their influence on plant carbon balance and water-use efficiency (ratio of carbon gain to water loss). All traits except number of seeds per capsule in parents and survival showed inbreeding depression, with the magnitude depending on family and environment. High inbreeding depression is likely in the ancestor of S. lydgatei and S. salicaria, indicating that, with sufficiently high selfing rates, females could spread in populations. Hermaphroditism in S. lydgatei is probably favored by low selfing rates. In contrast, the evolution of gynodioecy in S. salicaria apparently has been favored by relatively high selfing rates in combination with high inbreeding depression.  相似文献   

6.
Summary A multilocus procedure was used to estimate outcrossing rates in ten roadside populations of Trifolium hirtum in California. Three groups of populations were studied: cultivars, hermaphroditic, and gynodioecious (sexually dimorphic) populations. The multilocus outcrossing rate (tm) varied from 0.05 to 0.43 among populations. Population level tm estimates were significantly correlated with the observed heterozygosity in gynodioecious populations but not in hermaphroditic populations. The outcrossing rate of hermaphrodites and females was estimated in three gynodioecious populations; the estimates of tm varied from 0.09 to 0.23 for hermaphrodites and from 0.73 to 0.80 for females. The distribution of outcrossing rates in gynodioecious populations is bimodal. Our results indicate that for the levels of selfing observed among hermaphrodites, inbreeding depression is likely to be a major factor in the maintenance of females in gynodioecious populations.  相似文献   

7.
We investigated inbreeding depression and selfing in hermaphroditic Schiedea menziesii to assess the stability of the breeding system. A combination of high selfing rates and strong inbreeding depression suggests that the mating system is unstable. The population-level selfing rate measured in three years ranged considerably from 0.425 (SE = 0.138) to 0.704 (0.048); family measures of selfing rate varied from zero to one in all three years. Inbreeding coefficients did not differ from zero, suggesting that inbred plants do not survive to reproduction in the field. Average inbreeding depression measured in two greenhouse experiments was 0.608-0.870, with values for individual plants ranging from -0.170 to 0.940. The magnitude of inbreeding depression expressed at different life-history stages depended on experimental conditions. When plants were grown during the winter, inbreeding depression was expressed at early and late life-history stages. When plants were grown during the summer, inbreeding depression was detected for germination but not for later life-history stages. Inbreeding depression for vegetative and inflorescence biomass was also measured using field-collected seeds where cross status was assigned using genotypes determined electrophoretically. We did not detect a relation between inbreeding depression and the selfing rate at the level of the individual plant. We saw no evidence for intrafloral selfing, suggesting that the evolution of increased selfing through autogamy is unlikely, despite high selfing rates. A more likely outcome of breeding system instability is the evolution of gynodioecy, which occurs in species of Schiedea closely related to S. menziesii. Females have been detected in progeny of S. menziesii that have been raised in the greenhouse. In the absence of biotic pollen vectors, the failure of these females to establish in the natural population may result from the absence of adaptations for wind pollination.  相似文献   

8.
Progeny produced by inbreeding were compared to progeny derived from outcrosses for gynodioecious Schiedea salicaria and subdioecious S. globosa to assess fitness consequences of breeding system on parental fecundity (seeds per capsule) and progeny measures of fitness (germination, survival, biomass, and number of flowers). Results from both species indicated that inbreeding depression occurred at all measured stages of the life history. In both species, different females showed different levels of inbreeding depression. Multiplicative fitness functions of the ratio of values for selfed and outcrossed progeny in S. salicaria resulted in inbreeding depression values of 0.62–0.94. Within- vs. between-family crosses of S. globosa also resulted in inbreeding depression values as high as 0.49. These values suggest that inbreeding depression may promote the evolution of dioecy within S. globosa and S. salicaria, depending on the levels of natural outcrossing.  相似文献   

9.
In gynodioecious species, females coexist with hermaphrodites in natural populations even though hermaphrodites attract more pollinators, are capable of reproducing through pollen, and can self-fertilize. This study tests the hypothesis that inbreeding depression helps to maintain females in natural populations. It also examines whether gender lineages that differ in selfing rates might experience different levels of inbreeding depression. Female and hermaphroditic lineages of the gynodioecious species Geranium maculatum were used in self, sib-cross and outcross experiments to examine inbreeding depression levels and to determine whether these levels differ between hermaphroditic and female lineages. Six fitness correlates were measured in the greenhouse and compared among pollination types and between genders. Severe inbreeding depression was found for both individual fitness traits and cumulative fitness in early life history stages. Inbreeding depression levels were slightly higher in hermaphroditic than in female lineages, but this difference was not statistically significant. Because females are unable to self-pollinate and are less likely to experience inbreeding than hermaphrodites under natural conditions, these results suggest that severe inbreeding depression could confer a selective advantage for females that could help to maintain females in natural populations.  相似文献   

10.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

11.
Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001相似文献   

12.
Gynodioecious populations consist of separate hermaphroditic and female individuals. Females are at a selective disadvantage because they contribute genes to the next generation only through ovules, while hermaphrodites contribute genes through ovules and pollen. For females to be maintained in populations they must have some compensating selective advantage. The outcrossing hypothesis postulates that females are maintained because their progeny result from obligate outcrossing, whereas some of the progeny of hermaphrodites result from self-fertilization and are less fit because of inbreeding depression. If correct, the frequency of females should be positively correlated with selfing rates of hermaphrodites in populations. We found a strong positive correlation between female frequency and selfing rates of hermaphrodites (r = 0.91, P < 0.01) in eight gynodioecious populations of Hawaiian species of Bidens. Our results confirm that the obligate outcrossing of females is a major factor maintaining females in gynodioecious populations. However, the observed selfing rates are insufficient by themselves to account for the frequency of females in these populations.  相似文献   

13.
The maintenance of females in gender dimorphic populations requires that they have a fitness advantage to compensate for their loss of male reproductive function. We assess whether inbreeding avoidance provides this advantage in two subdioecious Wurmbea dioica populations by estimating seed production, outcrossing rates and inbreeding depression. Fruiting males produced less than half as many seeds as females, owing to low outcrossing rates and early acting inbreeding depression. Inbreeding coefficients of fruiting males demonstrated that progeny were more inbred than their parents, implying that few selfed progeny reach maturity, as confirmed by inbreeding depression estimates that exceeded 0.85. In a glasshouse experiment, open-pollinated females exhibited a fitness advantage of 3.7 relative to fruiting males, but when we increased fruiting male outcrossing rate, female advantage was only 1.4. This reduced advantage is insufficient to maintain females if nuclear genes control sex. Thus, inbreeding avoidance could maintain females at high frequencies, although this is contingent upon high frequencies of fruiting males, which can be altered by environmentally determined gender plasticity.  相似文献   

14.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

15.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

16.
Floral features related to the breeding system were studied for 11 species of Hawaiian Bidens. Protandry and male sterility promote outcrossing, while self-compatibility and geitonogamy contribute to inbreeding. The combination of these floral mechanisms results in a mixed mating system in all species studied. Outcrossing rates of 15 populations of these species ranged from 0.43 to 0.88, averaging 0.65. Apparent selling rates of females ranged from 0 to 0.25 in seven gynodioecious populations surveyed, suggesting that there is variation in the level of biparental inbreeding among populations. The presence of females increased the level of outcrossing by an average of 9% in gynodioecious populations. This study indicates that the efficiency of gynodioecy as an outcrossing mechanism largely depends on the current outcrossing rate of hermaphrodites, the frequency of females, and the extent of genetic substructuring in populations. On average, autogamy contributed 4%, geitonogamy contributed 24%, and consanguineous mating contributed 15% to the realized selfing rate (43%) in the hermaphrodites of these species.  相似文献   

17.
Inbreeding depression is a major selective force that maintains outcrossing in flowering plants. If the long life and large mature size of trees cause high inbreeding depression via mitotic mutations and half-sib competition, these characteristics may increase inbreeding depression sufficiently to maintain traits that facilitate outcrossing even with high primary selfing rates (proportion of selfed ovules). Here, I report the maintenance of inbreeding depression in a population of a tree (Magnolia obovata Thunb.) with primary selfing rates greater than 0.8 resulting from geitonogamy. The progenies exhibited inbreeding depression for germination, seedling survival, and seedling mass (δ = 0.29–0.38), but no significant difference between crossing type in seedling height. Cumulative inbreeding depression for early survival (from zygote to 2-year-old stage) estimated from these results and from prior data on embryonic survival was high (δe = 0.91). The fixation index at maturity based on six allozyme loci was low (Fis = 0.08), indicating that significant inbreeding depression for late survival results in a low level of inbreeding with respect to gene transmission to the next generation. From these results, I estimated that inbreeding depression for late and lifetime survival equaled 0.69 and 0.97, respectively. These results suggest that M. obovata trees maintain high inbreeding depression at both early and late life stages, resulting in a low level of inbreeding despite a high primary selfing rate. The high inbreeding depression can be explained by previous theories and is consistent with the predicted maintenance of inbreeding depression in highly self-fertilizing tree populations. The inbreeding load due to the high primary selfing rate represents a cost of this tree’s pollination system for outcrossing, which is based on automimicry and mass flowering. Co-ordinating editor: S.-M. Chang  相似文献   

18.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

19.
Inbreeding depression is one of the hypotheses explaining the maintenance of females within gynodioecious plant populations. However, the measurement of fitness components in selfed and outcrossed progeny depends on life-cycle stage and the history of inbreeding. Comparative data indicate that strong inbreeding depression is more likely to occur at later life-cycle stages. We used hermaphrodite individuals of Silene vulgaris originating from three populations located in different valleys in the Swiss Alps to investigate the effect of two generations of self- and cross-fertilization on fitness components among successive stages of the life cycle in a glasshouse experiment. We detected significant inbreeding depression for most life-cycle stages including: the number of viable and aborted seeds per fruit, probability of germination, above ground biomass, probability of flowering, number of flowers per plant, flower size and pollen viability. Overall, the intensity of inbreeding depression increased among successive stages of the life cycle and cumulative inbreeding depression was significantly stronger in the first generation (delta approximately 0.5) compared with the second generation (delta approximately 0.35). We found no evidence for synergistic epistasis in our experiment. Our finding of more intense inbreeding depression during later stages of the life cycle may help to explain the maintenance of females in gynodioecious populations of S. vulgaris because purging of genetic load is less likely to occur.  相似文献   

20.
The transition from biotic to wind pollination and the consequencesof this transition for the evolution of dioecious breeding systems wereinvestigated in Schiedea and Alsinidendron(Caryophyllaceae: Alsinoideae), genera endemic to the Hawaiian Islands. The potential for wind pollination was studied for five species ofSchiedea using a wind tunnel. Morphological correlates of windpollination for these species were then used to infer the presence orabsence of wind pollination in the remaining Schiedea species. Hermaphroditic Alsinidendron and Schiedea species,which occur in mesic to wet forests, or less commonly in dry habitats,show little or no indication of wind pollination. These species had lowpollen:ovule ratios, large relative pollen size, diffuse inflorescences,substantial nectar production in several cases, and appear to bebiotically pollinated or autogamous. Sexually dimorphic species, whichall occur in dry habitats, are wind pollinated, based on wind tunnelresults or morphological adaptations indicating the potential for windpollination. These adaptations include high pollen:ovule ratios, smallpollen size, moderately to highly condensed inflorescences, and reducednectaries and nectar production. Shifts to wind pollination anddimorphism are strongly correlated in Schiedea, suggesting theclose functional relationship of the twophenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号