首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI.  相似文献   

2.
Microimaging based on magnetic resonance is an experimental technique that can provide a unique view of a variety of plant physiological processes. Particularly interesting applications include investigations of water movement and spatially resolved studies of the transport and accumulation of labelled molecules in intact plant tissue. Some of the fundamental principles of nuclear and electron magnetic resonance microimaging are explained here and the potential of these techniques is shown using several representative examples.  相似文献   

3.
Hu Z  Liu C  Shi P  Liu H 《PloS one》2012,7(2):e31612
The change of BOLD signal relies heavily upon the resting blood volume fraction ([Formula: see text]) associated with regional vasculature. However, existing hemodynamic data assimilation studies pretermit such concern. They simply assign the value in a physiologically plausible range to get over ill-conditioning of the assimilation problem and fail to explore actual [Formula: see text]. Such performance might lead to unreliable model estimation. In this work, we present the first exploration of the influence of [Formula: see text] on fMRI data assimilation, where actual [Formula: see text] within a given cortical area was calibrated by an MR angiography experiment and then was augmented into the assimilation scheme. We have investigated the impact of [Formula: see text] on single-region data assimilation and multi-region data assimilation (dynamic cause modeling, DCM) in a classical flashing checkerboard experiment. Results show that the employment of an assumed [Formula: see text] in fMRI data assimilation is only suitable for fMRI signal reconstruction and activation detection grounded on this signal, and not suitable for estimation of unobserved states and effective connectivity study. We thereby argue that introducing physically realistic [Formula: see text] in the assimilation process may provide more reliable estimation of physiological information, which contributes to a better understanding of the underlying hemodynamic processes. Such an effort is valuable and should be well appreciated.  相似文献   

4.
In order to study the endothelial permeability to hydrophilic macromolecules in brain tumors we have developed a technique based on Gjedde-Rutland-Patlak approach to dynamic MRI study with Gd-DTPA injected intravenously, performed with low-field MRI tomograph Magnetom Open (Siemens medical). 27 patients with various brain tumors were referred for the study. The indices of Gd-DTPA transport to tumor tissue (KGd-DTPA) vary substantially, depending on the degree of malignancy and deliver essential information on microvascular permeability of tumor capillary bed.  相似文献   

5.
The design of excitation signals for Magnetic Resonance Imaging (MRI) is cast as an optimal control problem. Here, we demonstrate that signals other than pulse excitations, which are ubiquitous in MRI, can provide adequate excitation, thus challenging the optimality and ubiquity of pulsed signals. A class of on-resonance piecewise continuous amplitude modulated signals is introduced. It is shown that despite the bilinear nature of the Bloch equations, the spins system response is largely analytically tractable for this class of signals, using Galerkin approximation methods. To challenge the optimality of the pulse excitation, an appropriate cost criterion, the Signal Contrast Efficiency (SCE), is developed. It is to be optimised subject to dynamics expressed by the Bloch equations. To solve the problem the Bloch equation is transferred to the excitation dependent rotating frame of reference. The numerical solutions to the problem for different tissue types show that for a short period of time, pulse excitations provide the maximum signal contrast. However, the problem should be solved for longer periods of time which may result in a different answer than a pulse. For this purpose, the approximate analytic solution which is derived based on averaging the Bloch equation in the excitation dependent rotating frame of reference will be used to find the optimal excitation pattern. The solution to the optimisation problem is potentially useful for all forms of MRI including structural and functional imaging. The objective of this paper is to show that while classically transient response of pulses have been monitored so far, the optimal excitation pattern may be the steady state response of a non-pulse excitation.  相似文献   

6.
The C2 domain of synaptotagmin I, which binds to anionic phospholipids in cell membranes, was shown to bind to the plasma membrane of apoptotic cells by both flow cytometry and confocal microscopy. Conjugation of the protein to superparamagnetic iron oxide nanoparticles allowed detection of this binding using magnetic resonance imaging. Detection of apoptotic cells, using this novel contrast agent, was demonstrated both in vitro, with isolated apoptotic tumor cells, and in vivo, in a tumor treated with chemotherapeutic drugs.  相似文献   

7.
Dynamic magnetic resonance imaging was used to monitor solute diffusion through aggregates of Chinese hamster ovary cells growing on macroporous carriers in a fixed-bed bioreactor. Diffusion-weighted (1)H magnetic resonance imaging (MRI) and scanning electron microscopy demonstrated that cell growth in the bioreactor was heterogeneous, with the highest cell densities being found at the periphery of the carriers. T(1)-weighted magnetic resonance imaging measurements of the inflow of a commonly used magnetic resonance contrast agent, gadolinium-diethylenetriaminopentaacetic acid (Gd-DTPA), showed that migration of the agent through the peripheral cell masses could be explained by diffusion. However, appearance of the contrast agent in the center of the carriers was too fast to be explained by simple diffusion and indicated that these regions were perfused by convective flow. The average diffusivity of Gd-DTPA through the cell mass was found to be (2.4 +/- 0.2) x 10(-10) m(2) sec(-) (mean +/- SEM). This technique will be useful in the characterization and development of high-cell-density bioreactor systems, in which solute transport plays a critical role in cell growth and physiology.  相似文献   

8.
Magnetic Resonance Imaging (MRI) offers new possibilities for the visualization and the noninvasive quantification of the blood flow in human vessels. By the application of conventional gradient echo sequences with electrocardiographic gating on a 1.5 Tesla whole body MRI system the flow induced phase shifts in the ascending and the abdominal aorta are analyzed. The instantaneous two-dimensional velocity profiles and the instantaneous flow rates are determined in a series of subsequent images with high temporal resolution throughout the cardiac cycle. For the flow analysis in further vessels and for the analysis of more complex flow patterns, as they occur in bifurcations or stenoses, a new MR flow imaging technique called FAcE with extremely short echo times is introduced and the first results of flow examinations in a bifurcation phantom and in the carotid artery are presented.  相似文献   

9.
The accuracy of magnetic resonance imaging (MRI) in the diagnosis of Wilms' tumor (WT) and in the evaluation of preoperative chemotherapy (PCH) efficiency was investigated and compared with histopathological data of 56 children and infants with proven retroperitoneum neoplasma (WT--49, neuroblastoma--6, congenital mesoblastic nephroma--1). The author described the WT MRI-semiotics in general and in particular for its changes during the preoperative chemotherapy. The formula for calculation of tumor reduction index is suggested. The MRI sensitivity (100%), specificity (77.8%) and accuracy (91.1%) are detected. The high positive correlation level between the MRI and pathologic findings, concerning WT dimensions, pseudocapsule presence and safety, tumor structure secondary alterations and tumor spreading was found. At the same time, the specific MRI criteria for the different histological types of WT were not found. MRI is confirmed to be an accurate tool for diagnostic monitoring of patients with WT and other retroperitoneum neoplasms.  相似文献   

10.
This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast enhanced (DCE) magnetic resonance (MR) images. D(α,β) is the diagnostic parameter derived from the logistic model. Significant differences were found in D(α,β) between the malignant benign groups. Fisher's Linear Discriminant analysis correctly classified more than 90% of the benign and malignant kinetic breast data using the derived diagnostic parameter (D(α,β)). Receiver operating characteristic curve analysis of the derived diagnostic parameter (D(α,β)) indicated high sensitivity and specificity to differentiate malignancy from benignancy. The dual S-shaped logistic model was effectively used to fit the kinetic curves of breast lesions in DCE-MR. Separation between benign and malignant breast lesions was achieved with sufficient accuracy by using the derived diagnostic parameter D(α,β) as the lesion's feature. The proposed method therefore has the potential for computer-aided diagnosis in breast tumors.  相似文献   

11.
Non-invasive functional magnetic resonance imaging (fMRI) mapping techniques sensitive to the local changes of blood flow, blood volume, and blood oxygenation which accompany neuronal activation have been widely used over the last few years to investigate the functional organization of human cortical motor systems, and specifically of the primary motor cortex. Validation studies have demonstrated a good correspondence between quantitative and topographic aspects of data acquired by fMRI and positron emission tomography. The spatial and temporal resolution affordable by fMRI has allowed to achieve new important information on the distributed representation of hand movements in multiple functional modules, and on the intensity and spatial extent of neural activation in the contralateral and ipsilateral primary motor cortex in relation to parametric and nonparametric aspects of movement and to the degree of handedness. Neural populations with different functional characteristics have been identified in anatomically defined regions, and the temporal aspects of the activation during voluntary movement tracked in different components of the motor system. Finally, this technique has proved useful to deepen our understanding of the neural basis of motor imagery, demonstrating increased activity in the primary motor cortex during mental representation of sequential finger movements.  相似文献   

12.
Water-soluble gadofullerides exhibited high efficiency as magnetic resonance imaging (MRI) contrast agents. In this paper, we report the conjugation of the newly synthesized gadofulleride, Gd@C82O6(OH) 16(-)(NHCH2CH2COOH)8, with the antibody of green fluorescence protein (anti-GFP), as a model for "tumor targeted" imaging agents based on endohedral metallofullerenes. In this model system, the activity of the anti-GFP conjugate can be conveniently detected by green fluorescence protein (GFP), leading to in vitro experiments more direct and facile than those of tumor antibodies. Objective-type total internal reflection fluorescence microscopy revealed that each gadofulleride aggregate conjugated on average five anti-GFPs, and the activity of anti-GFPs was preserved after conjugation. In addition, the gadofulleride/antibody conjugate exhibited higher water proton relaxivity (12.0 mM (-1) s (-1)) than the parent gadofulleride aggregate (8.1 mM (-1) s (-1)) in phosphate buffered saline at 0.35 T, as also confirmed by T1-weighted images of phantoms. These observations clearly indicate that the synthesized gadofulleride/antibody conjugate not only has targeting potential, but also exhibits higher efficiency as an MRI contrast agent.  相似文献   

13.
The biological and physical properties of albumin and nitroxides make them attractive candidates as special purpose MRI contrast agents which could be used to study the intravascular compartment or specific targets in tissues. In this study, albumin-nitroxide complexes were prepared by reduction and alkylation of the disulfide bonds of the protein and characterized by electron spin resonance and ultraviolet absorption spectroscopy. An average of six nitroxides were bound covalently to each molecule of human serum albumin. The water proton relaxivity of the protein-bound nitroxide (at 20 MHz and 37 degrees C) was 4-fold greater than that of the free nitroxide. The digestion of the nitroxide-albumin complexes by cells or by trypsin decreased the relaxivity of the nitroxide-protein complex. The rate of reduction of albumin-bound nitroxide by cells was much slower than that of the free nitroxide but still was oxygen-sensitive (2-3-fold increase in the rate of reduction in the absence of oxygen).  相似文献   

14.
A scaffold bearing eight terminal alkyne groups was synthesized from sucrose, and copies of an azide-terminated Gd–DOTA complex were attached via copper(I)-catalyzed azide-alkyne cycloaddition. The resulting contrast agent (CA) was administered by gavage to C3H mice. Passage of the CA through the gastrointestinal (GI) tract was followed by T1-weighted magnetic resonance imaging (MRI) over a period of 47 h, by which time the CA had exited the GI tract. No evidence for leakage of the CA from the GI tract was observed. Thus, a new, orally administered CA for MRI of the GI tract has been developed and successfully demonstrated.  相似文献   

15.
BackgroundGadolinium-based contrast media (GBCM) are commonly used in diagnostic magnetic resonance imaging (MRI) in clinical applications. The objective of this study is to evaluate the antioxidant properties and effects on red blood cells (RBCs) and K562 cancer cells of three GBCMs (i.e.; gadoterate meglumine, gadopentetate dimeglumine, and gadobenate dimeglumine) inin vitro levels.MethodsFor determiningin vitro antioxidant properties, the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH) and ferric reducing ability of plasma (FRAP) assay were used. For determining effect on red blood cells, hemolysis, morphology and reactive oxygen species (ROS) were used. For determining effect on K562 cancer cells, cytotoxicity and ROS were used. The GBCM -exposed cells were compared to corresponding non-exposed control groups at various harvest times.ResultsThe results show no changes occurring in the DPPH data. However, there were significant increases based on FRAP data in three GBCMs compared to the corresponding control at all concentrations. The ROS, morphology, and percentage of hemolysis in red blood cells indicated that no change had occurred in three GBCMs-exposed red blood cells compared to the corresponding non-exposed control groups at all harvest times. The percentage of cell viability in K562 cancer cells showed decreases in gadoterate meglumine- and gadobenate dimeglumine- in a concentration dependent manner, but did not show same in gadopentetate dimeglumine-exposed K562 cancer cells. The percentage of ROS in K562 cancer cells indicated that no change in three GBCMs-exposed cells had occurred when compared to the corresponding non-exposed control groups at all harvest times.ConclusionThese findings suggests thatin vitro antioxidant properties exhibited by those three GBCMs depends on their concentration and species of radical in testing assay. There were no toxic effects from those GBCMs when red blood cells were exposed in an in vitro condition. In addition, some of those GBCMs could induce cell death in cancer cells.  相似文献   

16.
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia.  相似文献   

17.

Background

Used as contrast agents for brain magnetic resonance imaging (MRI), markers for beta-amyloid deposits might allow early diagnosis of Alzheimer''s disease (AD). We evaluated the cost-effectiveness of such a diagnostic test, MRI+CLP (contrastophore-linker-pharmacophore), should it become clinically available.

Methodology/Principal Findings

We compared the cost-effectiveness of MRI+CLP to that of standard diagnosis using currently available cognition tests and of standard MRI, and investigated the impact of a hypothetical treatment efficient in early AD. The primary analysis was based on the current French context for 70-year-old patients with Mild Cognitive Impairment (MCI). In alternative “screen and treat” scenarios, we analyzed the consequences of systematic screenings of over-60 individuals (either population-wide or restricted to the ApoE4 genotype population). We used a Markov model of AD progression; model parameters, as well as incurred costs and quality-of-life weights in France were taken from the literature. We performed univariate and probabilistic multivariate sensitivity analyses.The base-case preferred strategy was the standard MRI diagnosis strategy. In the primary analysis however, MRI+CLP could become the preferred strategy under a wide array of scenarios involving lower cost and/or higher sensitivity or specificity. By contrast, in the “screen and treat” analyses, the probability of MRI+CLP becoming the preferred strategy remained lower than 5%.

Conclusions/Significance

It is thought that anti-beta-amyloid compounds might halt the development of dementia in early stage patients. This study suggests that, even should such treatments become available, systematically screening the over-60 population for AD would only become cost-effective with highly specific tests able to diagnose early stages of the disease. However, offering a new diagnostic test based on beta-amyloid markers to elderly patients with MCI might prove cost-effective.  相似文献   

18.
Idiopathic dilated cardiomyopathy (IDC) is characterized by left ventricular (LV) enlargement with systolic dysfunction, other causes excluded. When inherited, it represents familial dilated cardiomyopathy (FDC). We hypothesized that IDC or FDC would show with cardiac magnetic resonance (CMR) increased myocardial accumulation of gadolinium contrast at steady state and decreased baseline myocardial blood flow (MBF) due to structural alterations of the extracellular matrix compared with normal myocardium. CMR was performed in nine persons affected with IDC/FDC. Healthy controls came from the general population (n = 6) or were unaffected family members of FDC patients (n = 3) without signs or symptoms of IDC/FDC or any structural cardiac abnormalities. The myocardial partition coefficient for gadolinium contrast (lambda(Gd)) was determined by T1 measurements. LV shape and function and MBF were assessed by standard CMR methods. lambda(Gd) was elevated in IDC/FDC patients vs. healthy controls (lambda(Gd) = 0.56 +/- 0.15 vs. 0.41 +/- 0.06; P = 0.002), and correlated with LV enlargement (r = 0.61 for lambda(Gd) vs. end-diastolic volume indexed by height; P < 0.01) and with ejection fraction (r = -0.80; P < 0.001). The extracellular volume fraction was higher in IDC patients than in healthy controls (0.31 +/- 0.05 vs. 0.24 +/- 0.03; P = 0.002). Resting MBF was lower in IDC patients (0.64 +/- 0.13 vs. 0.91 +/- 0.22; P = 0.01) than unaffected controls and correlated with both the partition coefficient (r = -0.57; P = 0.012) and the extracellular volume fraction (r = -0.56; P = 0.019). The expansion of the extracellular space correlated with reduced MBF and ventricular dilation. Expansion of the extracellular matrix may be a key contributor to contractile dysfunction in IDC patients.  相似文献   

19.
This experiment aimed to compare the ionic(Gadodiamide,Gd-DTPA-BMA) and non-ionic(Gadopentetate dimeglumine,Gd-DTPA) gadolinium-based contrast agents(GBCA) in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI).A C6 glioma model was established in 12 Wistar rats,and magnetic resonance(MR)scans were performed six days after tumor implantation.Imaging was performed using a 3.0-T MR scanner with a 7-inch handmade circular coil.Pre-contrast T1 mapping and dynamic contrast-enhanced T1 WI after a bolus injection(0.2 mL s~(-1)) of GBCA at 0.4 mmol kg~(-1) were performed.Each rat received two DCE-MRI scans,24 h apart.The first and second scans were performed using Gd-DTPA-BMA and Gd-DTPA,respectively.Image data were processed using the Patlak model.Both K~(trans)and V_p maps were generated.Tumors were manually segmented on all 3D K~(trans) and V_p maps.Pixel counts and mean values were recorded for use in a paired f-test Three radiologists independently performed the tumor segmentation and value calculation.The agreements from different observers were subjective to the intra-class correlation coefficient(ICC).Readers demonstrated that the pixel counts of tumors in K~(trans) maps were higher with Gd-DTPA-BMA than with Gd-DTPA(P0.001,all readers).Although the K~(trans) values were higher with Gd-DTPA-BMA than with Gd-DTPA,there was no statistical significance(P0.05,all readers).The pixel counts of tumors in V_p maps,as well as V_p values,showed no obvious difference between the two agents(P0.05,all readers).Excellent interobserver measurement reproducibility and reliability were demonstrated in the ICC tests.The Gd-DTPA-BMA contrast agent had significantly higher pixel counts of glioma in the K~(trans) maps,and an increased tendency for average K~(trans) values,indicating that DCE-MRI with Gd-DTPA-BMA may be more suitable and sensitive for the evaluation of glioma.  相似文献   

20.
人脑功能磁共振成像及其在认知神经科学研究中的应用   总被引:18,自引:1,他引:18  
目录一、磁共振成像原理简介二、脑激活(一)T2变化(二)T1变化三、功能磁共振信号特点(一)信号强度(二)时间分辨率(三)空间分辨率四、FMRI研究中的一些技术问题(一)实验设计与数据处理(二)头动问题五、FMRI在认知神经科学研究中的应用(一)感...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号