首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repeated, convergent evolution of body shape and microhabitat use in Greater Antillean lizards of the genus Anolis (anoles) provides compelling evidence of the importance of microhabitat specialization in shaping morphology. Interestingly, sexual dimorphism is also extensive, with males and females differing in body size as well as in shape. It is important to note that the components of shape analyzed in these studies is related to locomotion and are size-adjusted, including: relative limb and body lengths and mass of the body. Numbers of lamellae were also used and these do not vary with size. Furthermore, dimorphism in both size and shape differs by habitat type. Thus, does functionally-relevant sexual dimorphism imply that one sex is the "ecological" sex, with the other being maladapted to it's environment? Alternatively, sexual dimorphism may interact with adaptive diversification. Different classes of individuals within a species may act as separate ecological units if they play ecologically different roles. Here, I reanalyze a data set of morphological data for 15 species of Puerto Rican and Jamaican Anolis, which represent two largely independent adaptive radiations of lizards. I test for concordance between size and shape dimorphism and microhabitat (ecomorph) type, and for "parallel" patterns of sexual dimorphism among species. I integrate these results and, in the light of previous research, evaluate the relative influence that larger-scale ecological patterns have on sexual dimorphism, as well as the influence of sexual dimorphism on community structuring. I conclude that the presence of ecologically-relevant dimorphism may in fact increase the adaptive diversity present within a community.  相似文献   

2.
Podarcis bocagei and P. carbonelli are two closely related lacertid species, very similar morphologically and ecologically. We investigated sexual dimorphism patterns presented by both species in allopatry and in sympatry. Sexual size and shape dimorphism patterns were analyzed using both multivariate and geometric morphometric techniques. Multivariate morphometrics revealed a marked sexual dimorphism in both species--males being larger with more robust habitus and females presenting a longer trunk. General patterns of sexual size dimorphism are not modified in sympatry, although there is evidence for some morphological change in male head size. The application of geometric morphometrics offered a more detailed image of head shape and revealed that males present a more developed tympanic area than do females, while females have a more rounded head. Differences in the degree of sexual shape dimorphism were detected in sympatry, but no consistent patterns were observed. From the results of the study, and based on previous knowledge on the populations studied, we conclude that the morphological differences observed are probably not caused by exploitative competition between the species, but rather appear attributable to the modification of the relative influence of sexual and natural selection on both sexes.  相似文献   

3.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

4.
5.
Sexual selection,sexual dimorphism and plant phylogeny   总被引:2,自引:0,他引:2  
Summary Darwin examined sexual dimorphism in animals, arguing that sexual selection was important in the evolution of such dimorphism. Sexual dimorphism in plants may have parallel causes and costs.The processes that contribute to sexual dimorphism may also lead to speciation and morphological differences among related species, as argued originally by Darwin. Where sexes are separate and dimorphism is well-developed, males of related animal species (both vertebrate and invertebrate) are often strikingly different from each other, while females may be virtually indistinguishable. A similar pattern may exist in plants: it is frequently the males (of dioecious taxa) or the male portions of the flower (in co-sexual flowers) that apparently have diversified. I suggest that the similarity of pattern may be accounted for by a similarity of process.In addition, sexual selection may have contributed to certain evolutionary trends within the angiosperms and, indeed, to angiosperm radiation.  相似文献   

6.
Evidence of sexual dimorphism in body size and the existence of morphological differences were studied in the yellow‐whiskered Greenbul Andropadus latirostris. We measured fresh body weight and seven linear parameters of external morphology in mature individuals of this species from three localities in Cameroon and two localities in Ghana. Based on general linear model analysis, we showed that males are significantly larger than females. We applied a discriminant analysis on eight morphometric parameters to create two discriminant functions, one for each country. The overall rate of well‐classified birds was 93.3% for Cameroon and 92.7% for Ghana. Wing length was the most accurate character for separating the sexes in both study areas. Significant sexual size dimorphism might be explained by sexual selection on male competitive ability and intraspecific competition. We also found morphological divergence in this species between the two study areas, including marked differences in size of the beak. This work provides statistical evidence of a substantial sexual size dimorphism in A. latirostris and geographic variation in morphology.  相似文献   

7.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

8.
动物中普遍存在雌雄个体身体大小的性二态现象。了解近缘种之间身体大小性二态现象的差异,可为深入探讨身体大小性二态现象的潜在驱动机制提供证据。国外对欧亚大山雀(Parus major)的研究发现,其喙长、跗跖长、翅长等 6 项身体大小指标存在着明显的性二态,且喙长的性二态存在季节间差异。大山雀(P. cinereus)曾被作为欧亚大山雀的一个亚种,其形态和行为与欧亚大山雀存在着诸多相似之处。为探讨大山雀是否也存在身体大小性二态及季节性差异,本研究分析了 2018 至 2020 年间在河南董寨国家级自然保护区捕捉的 226 只(雌性 96 只和雄性 130 只)大山雀的喙长、头喙长、跗跖长、翅长、尾长和体长这 6 项体征指标的两性差异及其季节变化。结果显示,大山雀上述 6 项身体大小指标均存在不同程度的性二态现象,且雄性个体仅喙长与雌性的差异不显著,其余 5 项指标均显著大于雌性。此外,身体大小指标的两性差异不随季节显著变化,但两性的跗跖长在秋季均显著短于冬季和繁殖季,尾长在繁殖季均显著长于秋季和冬季。上述结果表明,大山雀身体大小的性二态及其季节性差异与欧亚大山雀并不完全相似。无论其身体大小存在性二态和季节变化的原因,还是其与欧亚大山雀在身体大小性二态模式上的差别,都有待今后进一步的研究。  相似文献   

9.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

10.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

11.
Sexual dimorphism in craniodental features is investigated in a sample of 45 carnivore species in relation to allometry, phylogeny, and behavioural ecology. Dimorphism is more pronounced in both upper and lower canine size and strength than in carnassial size, skull dimensions and biomechanical features, but all dimorphism indices covary. As with most morphological characters, differences in canine sexual dimorphism are significantly related to phylogeny, estimated from either taxonomic rankings or a limited matrix of molecular distances; in particular, mustelids, felids and procyonids are more dimorphic than other carnivore families. Thus, because of problems related to species dependence in comparative data, remaining analyses are based on phylogenetically transformed values using a spatial autoregressive method.
In contrast to other mammals, sexual dimorphism in carnivore canines is not correlated with differences in body weight, skull length or basicranial axis length. Nor is it correlated with categorical variables of activity pattern, habitat, or diet. In our Carnivore sample, canine dimorphism is related only to breeding system: uni-male, group-living (harem) species have significantly greater canine dimorphism than multi-male, multi-female groups and monogamous pair-bonding species. By contrast, dimorphism in carnassial size is related to dietary differences, specifically greater dimorphism in meat-eating species, and not breeding patterns. Dimorphism in estimates of jaw muscle size suggest functional demands from both diet and breeding type. It is concluded that, befitting patterns of heterodont dentition, sexual selection influences variation in canine dimorphism while feeding ecology is related to carnassial dimorphism.  相似文献   

12.
M. A. Elgar    N. Ghaffar    A. F. Read 《Journal of Zoology》1990,222(3):455-470
The degree and direction of sexual dimorphism across different species is commonly attributed to differences in the selection pressures acting on males and females. The extent of these differences is especially apparent in species that practise sexual cannibalism, where the female attempts to capture and eat a courting male. Here, we investigate the relationship between sexual dimorphism in size and leg length, sexual cannibalism and courtship behaviour in three taxonomic groups of orb-weaving spiders, using morphological data from 249 species in 36 genera. Females are larger than males in all three taxonomic groups, and males have relatively longer legs than females in both the Araneinae and Tetragnathidae. Across genera within each taxonomic group, male body size is positively correlated with both female body size and male leg length, and female body size is positively correlated with female leg length. Sexual size dimorphism is negatively correlated with relative male leg length within the Araneinae, but not within either the Tetragnathidae or the Gasteracanthinae. There was no negative correlation between sexual size dimorphism and relative female leg length in any taxonomic group. We argue that the relationship between sexual size dimorphism and relative male leg length within the Araneinae may be the result of selection imposed by sexual cannibalism by females.  相似文献   

13.
Plants of Lycium californicum, L. exsertum, and L. fremontii produce flowers that are either male-sterile (female) or hermaphroditic, and populations are morphologically gynodioecious. As is commonly found in gynodioecious species, flowers on female plants are smaller than those on hermaphrodites for a number of floral traits. Floral size dimorphism has often been hypothesized to be the result of either a reduction in female flower size that allows reallocation to greater fruit and seed production, or an increase in hermaphroditic flower size due to the increased importance of pollinator attraction and pollen export for hermaphroditic flowers. We provide a test of these two alternatives by measuring 11 floral characters in eight species of Lycium and using a phylogeny to reconstruct the floral size shifts associated with the evolution of gender dimorphism. Our analyses suggest that female flowers are reduced in size relative to the ancestral condition, whereas flowers on hermaphrodites have changed only slightly in size. Female and hermaphroditic flowers have also diverged both from one another and from ancestral cosexual species in several shape characteristics. We expected sexual dimorphism to be similar among the three dimorphic taxa, as gender dimorphism evolved only a single time in the ancestor of the American dimorphic lineage. While the floral sexual dimorphism is broadly similar among the three dimorphic species, there are some species-specific differences. For example, L. exsertum has the greatest floral size dimorphism, whereas L. fremontii had the greatest size-independent dimorphism in pistil characters. To determine the degree to which phylogenetic uncertainty affected reconstruction of ancestral character states, we performed a sensitivity analysis by reconstructing ancestral character states on alternative topologies. We argue that investigations such as this one, that examine floral evolution from an explicitly phylogenetic perspective, provide new insights into the study of the evolution of floral sexual dimorphism.  相似文献   

14.
Sexual dimorphism in primate species expresses the effects of phylogeny, life history, behavior, and ontogeny. The causes and implications of sexual dimorphism have been studied in several different primates using a variety of morphological databases such as body weight, canine length, and coat color and ornamentation. In addition to these different patterns of dimorphism, the degree to which a species is dimorphic results from a variety of possible causes. In this study we test the general hypothesis that a species highly dimorphic for one size-based index of dimorphism will be equally dimorphic (relative to other species) for other size-based indices. Specifically, the degree and pattern of sexual dimorphism in Cebus and several other New World monkey species is measured using craniometric data as a substitute for the troublesome range of variation in body weight estimates. In general, the rank ordering of species for dimorphism ratios differs considerably across neural vs. non-neural functional domains of the cranium. The relative degree of sexual dimorphism in different functional regions of the cranium is affected by the independent action of natural selection on those regions. Regions of the cranium upon which natural selection is presumed to have acted within a species show greater degrees of dimorphism than do the same regions in closely related taxa. Within Cebus, C. apella is consistently more dimorphic than other Cebus species for facial measurements, but not for neural or body weight measurements. The pattern in C. apella indicates no single best measurement of the degree of dimorphism in a species; rather, the relative degree of dimorphism applies only to the region being measured and may be enhanced by other selective pressures on morphology. Am J Phys Anthropol 107:243–256, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Sexual dimorphism in relation to current selection in the house finch   总被引:3,自引:0,他引:3  
Abstract.— Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch ( Carpodacus mexicanus ) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years.  相似文献   

16.
New environmental conditions may impact on behaviour and morphology, and consequently affect population dynamics. Rapid response to new conditions is likely to be a key factor in species introduction success. The Red-whiskered Bulbul Pycnonotus jocosus is an Asian species which, following accidental introduction only 30 years ago, has colonized the two climatically and ecologically contrasting sides of the island of Réunion in the Indian Ocean. We assessed the degree of morphological divergence of mature birds in 11 non-seasonal and three seasonal characters, in windward and leeward sites. Our study showed (1) that sexual dimorphism existed, (2) that when sexual dimorphism is controlled, nine non-seasonal characters differed significantly between windward and leeward sites, (3) that these non-seasonal characters define groups of geographically proximal sites, especially in males, and (4) that classification according to the most indicative character, the bill, also clearly separated birds from windward and leeward sites. These results indicate very rapid morphological divergence, particularly in bill size, in an introduced bird species in fewer than ten generations. We suggest that differences in diet could partly explain this variability.  相似文献   

17.
Variation in guenon skulls (II): sexual dimorphism   总被引:2,自引:1,他引:1  
Patterns of size and shape sexual dimorphism in adult guenons were examined using a large sample of skulls from almost all living species. Within species, sexual dimorphism in skull shape follows the direction of size-related shape variation of adults, is proportional to differences in size, and tends to be larger in large-bodied species. Interspecific divergence among shape trajectories, which explain within species sex differences, are small (i.e., trajectories of most species are nearly parallel). Thus, changes in relative proportions of skull regions that account for the distinctive shape of females and males are relatively conserved across species, and their magnitude largely depends on differences in size between sexes. A conservative pattern of size-related sexual dimorphism and a model of interspecific divergence in shape which strongly reflects size differences suggest a major role of size and size-related shape variation in the guenon radiation. It is possible that in the guenons, as in the neotropical primates (with whom they have obvious parallels), size has helped to determine morphological change along lines of least evolutionary resistance, influencing sexual dimorphism. In Miopithecus and Erythrocebus, the smallest and largest guenon genera, it is likely that the interaction of ecology and size contributes significantly to patterns of sexual dimorphism. The results of this study thus emphasise the need to consider allometry and size alongside ecology and behaviour when examining primate sexual dimorphism.  相似文献   

18.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

19.
Currently there is much interest in the potential for sexual selection or conflict to drive speciation. Theory proposes that speciation will be accelerated where sexual conflict is strong, particularly if females are ahead because mate choice will accentuate divergence by limiting gene flow. The Goodeinae are a monophyletic group of endemic Mexican fishes with an origin at least as old as the Miocene. Sexual selection is important in the Goodeinae and there is substantial interspecific variability in body morphology, which influences mate choice, allowing inference of the importance of female mate choice. We therefore used this group to test the relationship between sexual dimorphism and speciation rate. We quantified interspecific variation in sexual dimorphism amongst 25 species using a multivariate measure of total morphological differentiation between the sexes that accurately reflects sexual dimorphism driven by female mate choice and also used a mtDNA-based phylogeny to examine speciation rates. Comparative analyses failed to support a significant association between sexual dimorphism and speciation rate. In addition, variation in the time course of speciation throughout the whole clade was also examined using a similar tree containing 34 extant species. A constant rates model for the growth of this clade was rejected, but analyses instead indicated a decline in the rate of speciation over time. These results support the hypothesis of an early expansion of the group, perhaps due to an early radiation influenced by the key innovation of live bearing, or the prevalence of Miocene volcanism. In general, support for the role of sexual selection in generating patterns of speciation is proving equivocal and we argue that vicariance biogeography and adaptive radiations remain the most likely determinants of major patterns of diversification of continental organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号