首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosome synthesis in bacteria is linked to RNA polymerase synthesis; both synthesis rates depend upon the values of six parameters: (1) fraction of total ribosomes that is functioning, (2) fraction of total RNA polymerase that is functioning, (3) fraction of functioning RNA polymerase engaged in rRNA synthesis, (4) fraction of total protein that is RNA polymerase protein, (5) peptide chain elongation rate, (6) rRNA chain elongation rate. If these parameters are constant in time, then the numbers of both ribosomes and RNA polymerase molecules increase exponentially. It is shown how the rate constant (fractional increase per unit of time) relates to these parameters and how the kinetics of ribosome and RNA polymerase synthesis respond to a change in any of these parameters.  相似文献   

2.
Temperature dependence of RNA synthesis parameters in Escherichia coli   总被引:19,自引:10,他引:9       下载免费PDF全文
For Escherichia coli B/r growing in glucose minimal medium, the following parameters of RNA synthesis remained invariant between 20 and 40 degrees C: RNA polymerase concentration (RNA polymerase/mass), rRNA and tRNA concentration (RNA/mass), RNA polymerase activity (fraction of total RNA polymerase actively engaged in RNA chain elongation), and stable RNA synthesis relative to total RNA synthesis. The following parameters increased 3.4-fold over the same temperature range: rRNA chain elongation rate, guanosine tetraphosphate (ppGpp) concentration, and culture growth rate. Above 40 degrees C, the changes became more complex, and the growth rate began to decrease. The observation that most RNA synthesis parameters are temperature invariant despite the increase of ppGpp suggests that the mechanism of RNA synthesis control by ppGpp, assumed to involve an interaction of RNA polymerase wtih ppGpp, is itself temperature dependent such that, with increasing temperature, higher concentrations of ppGpp are required to affect the RNA polymerase.  相似文献   

3.
The effects of extra, plasmid-borne rRNA genes on the synthesis rate of rRNA in Escherichia coli were examined by measuring the fraction of total RNA synthesis that is rRNA and tRNA (rs/rt), the cytoplasmic concentration of guanosine tetraphosphate (ppGpp), and the absolute rates of RNA and protein synthesis. Experiments were carried out in different growth media and with two different strains of E. coli, B/r and K-12. The results indicated: 1) increased rrn gene dosage from either intact or defective rrn genes reduced bacterial growth rates and ribosome activity (protein synthesis rate/average ribosome), and increased rs/rt. 2) Extra intact, but not extra defective, plasmid-borne rrn genes caused the level of ppGpp to be increased in comparison to the pBR322-carrying control strain. 3) As a function of ppGpp, rs/rt was increased with either intact or defective rrn genes. 4) The rRNA synthesis rate/rrn gene was reduced in the presence of extra rrn genes; this reduction in gene activity was greater with intact than with defective rrn genes. An analysis of these results showed that they are consistent with the ppGpp hypothesis of rRNA control but not with a feedback effector role of translating ribosomes.  相似文献   

4.
J Ryals  R Little    H Bremer 《Journal of bacteriology》1982,151(3):1425-1432
Parameters of RNA synthesis were measured after a temperature upshift in a pair of Escherichia coli B/r strains that are isogenic except for having relA and relA+ loci, to examine the cause for a reported anomaly in the correlation between guanosine tetraphosphate (ppGpp) and stable RNA (rRNA, tRNA) synthesis under such conditions. Two main results were: (i) the specific stable RNA gene activity (stable RNA per total RNA synthesis) correlated in the conventionally expected fashion with the level of ppGpp but was obscured by a nonspecific increase in the RNA chain elongation rate due to the higher temperature; (ii) the temperature upshift caused a transient reduction in the RNA polymerase activity (transcribing per total enzyme) that accounts for the previously observed oscillating RNA synthesis rate after a temperature shift.  相似文献   

5.
6.
7.
8.
The protein synthesis elongation factors Tu and Ts are responsible for binding aminoacyl-transfer ribonucleic acid (RNA) to the ribosome. In addition, they perform an undefined function, as the EF-Tu.Ts complex, in the RNA phage RNA replicases. In an effort to obtain insight into these two apparently unrelated roles, we purified the elongation factors from Caulobacter crescentus and compared them to the analogous Escherichia coli polypeptides. Although most physical and functional characteristics were found to be similar, significant differences were found in the molecular weight of EF-Ts and relative affinities of guanine nucleotides, sensitivity to trypsin cleavage, and rate of heat denaturation of EF-Tu. The antibiotic kirromycin was active with EF-Tu from both bacterial species. When C. crescentus EF-Tu.Ts was substituted for the E. coli elongation factors in Q beta phage RNA replicase, an enzyme capable of apparently normal RNA synthetic activity was formed.  相似文献   

9.
The correlation between ribosome content and growth rate found in many bacterial species has proved useful for estimating the growth activity of individual cells by quantitative in situ rRNA hybridization. However, in dynamic environments, the stability of mature ribosomal RNA causes problems in using cellular rRNA contents for direct monitoring of bacterial growth activity in situ . In a recent paper, Cangelosi and Brabant suggested monitoring the content of precursors in rRNA synthesis (pre-rRNAs) as an alternative approach. These are rapidly broken down after the cessation of bacterial growth. We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial growth. The amounts of 23S rRNA and pre-16S rRNA measured for E. coli growing in intestinal mucus corresponded to that expected for bacteria with the observed growth rate. In contrast, the slow-growing E. coli cells present in intestinal contents turned out to have an approximately ninefold higher content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA.  相似文献   

10.
11.
12.
The translocation reaction catalyzed by elongation factor G (EF-G) is inhibited either by alpha-sarcin cleavage of 23S rRNA or by the binding of thiostrepton to the E. coli ribosome. Here we show that the transitory binding of EF-G and GDP to the ribosome inhibited the rate of alpha-sarcin cleavage and that stabilization of this binding with fusidic acid completely prevented alpha-sarcin cleavage. A similar pattern of inhibition was seen upon the binding of elongation factor 2 to the S. cerevisiae ribosome. The irreversible binding of the antibiotic thiostrepton to the E. coli ribosome, on the other hand, decreased the rate of cleavage by alpha-sarcin approximately 2-fold. These results suggest that the alpha-sarcin site is located within the ribosomal domain for EF-G binding and that the conformation of this site is affected by the binding of thiostrepton.  相似文献   

13.
The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m(2)G966 and m(5)C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m(2)G966/m(5)C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNA(fMet) to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m(2)G966 and m(5)C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.  相似文献   

14.
The binding of the EF-Tu.GTP.aminoacyl-tRNA ternary complex (EF, elongation factor) to the ribosome is known to be strengthened by a 2661G-to-C mutation in 23S ribosomal RNA, whereas the binding to normal ribosomes is weakened if the factor is in an appropriate mutant form (Aa). In this report we describe the mutual effects by the 2661C alteration in 23S rRNA and EF-Tu(Aa) on bacterial viability and translation efficiency in strains with normal or mutationally altered ribosomes. The rrnB(2661C) allele on a multicopy plasmid was introduced by transformation into Escherichia coli K-12 strains, harbouring either the wild-type or the mutant gene (tufA) for EF-Tu as well as normal or mutant ribosomal protein S12 (rpsL). Together with wild-type EF-Tu, the 2661C mutant ribosomes decreased the translation elongation rate in a rpsL+ strain or a non-restrictive rpsL224 strain. This reduction was not seen in strains which harbored EF-Tu(Aa) instead of EF-Tu(As) (As, wild-type form). Nonsense codon suppression by tyrT(Su3) suppressor tRNA was reduced by 2661C in a rpsL224 strain in the presence of EF-Tu(As) but not in the presence of EF-Tu(Aa). The lethal effect obtained by the combination of 2661C and a restrictive ribosomal protein S12 mutation (rpsL282) disappeared if EF-Tu(As) was replaced by EF-Tu(Aa) in the strain. In such a viable strain, 2661C had no effect on either the translation elongation rate or nonsense codon suppression. Our data suggest that the G base at position 2661 in 23S rRNA is important for binding of EF-Tu during protein synthesis in vivo. The interaction between this base and EF-Tu is strongly influenced by the structure of ribosomal protein S12.  相似文献   

15.
R Little  J Ryals    H Bremer 《Journal of bacteriology》1983,155(3):1162-1170
We have previously reported the isolation of Escherichia coli rpoB mutants in which the control of ribosome synthesis by the nucleotide effector guanosine tetraphosphate (ppGpp) is altered, owing to a 20-fold increased sensitivity of the mutant RNA polymerases to ppGpp. In these mutants, the level of ppGpp during exponential growth is decreased about 10-fold, relative to that of rpoB+ wild-type strains, such that a near normal partitioning of RNA polymerase occurs with respect to stable RNA (rRNA and tRNA) gene activity. Here, the physiological effects of two different rpoB alleles in a relA+ and relA background were analyzed in greater detail by comparison with their isogenic rpoB+ wild-type parents. For a given growth medium, the rpoB mutations were found to affect four parameters which resulted in a reduction of growth rate. The results reinforce a previous conclusion that a key element in control of the bacterial growth rate is a mutual relationship between control of ribosome synthesis by ppGpp and control of relA-independent ppGpp metabolism by the concentration and function of ribosomes.  相似文献   

16.
17.
18.
Here we show that most macromolecular biosynthesis reactions in growing bacteria are sub-saturated with substrate. The experiments should in part test predictions from a previously proposed model (Jensen & Pedersen 1990) which proposed a central role for the rates of the RNA and peptide chain elongation reactions in determining the concentration of initiation competent RNA polymerases and ribosomes and thereby the initiation frequencies for these reactions. We have shown that synthesis of ribosomal RNA and the concentration of ppGpp did not exhibit the normal inverse correlation under balanced growth conditions in batch cultures when the RNA chain elongation rate was limited by substrate supply. The RNA chain elongation rate for the polymerase transcribinglacZ mRNA was directly measured and found to be reduced by two-fold under conditions of high ppGpp levels. In the case of translation, we have shown that the peptide elongation rate varied at different types of codons and even among codons read by the same tRNA species. The faster translated codons probably have the highest cognate tRNA concentration and the highest affinity to the tRNA. Thus, the ribosome may operate close to saturation at some codons and be unsaturated at synonymous codons. Therefore, not only translation of the codons for the seven amino acids, whose biosynthesis is regulated by attenuation, but also a substantial fraction of the other translation reactions may be unsaturated. Recently, we have obtained results which indicate that also many ribosome binding sites are unsaturated with their substrate, i.e. with ribosomes. This observation affects the interpretation of many results obtained by use of reporter genes, because the expression from such genes is strongly influenced by the general physiology of the cell.  相似文献   

19.
The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.  相似文献   

20.
Protein synthesis on the ribosome involves a number of external protein factors that bind at its functional sites. One key factor is the elongation factor G (EF-G) that facilitates the translocation of transfer RNAs between their binding sites, as well as advancement of the messenger RNA by one codon. The details of the EF-G/ribosome diffusional encounter and EF-G association pathway still remain unanswered. Here, we applied Brownian dynamics methodology to study bimolecular association in the bacterial EF-G/70S ribosome system. We estimated the EF-G association rate constants at 150 and 300 mM monovalent ionic strengths and obtained reasonable agreement with kinetic experiments. We have also elucidated the details of EF-G/ribosome association paths and found that positioning of the L11 protein of the large ribosomal subunit is likely crucial for EF-G entry to its binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号