首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The immunity proteins of pediocin-like bacteriocins show a high degree of specificity with respect to the pediocin-like bacteriocin they recognize and confer immunity to. The aim of this study was to identify regions of the immunity proteins that are involved in this specific recognition. Six different hybrid immunity proteins were constructed from three different pediocin-like bacteriocin immunity proteins that have similar sequences but confer resistance to different bacteriocins. These hybrid immunity proteins were then tested for their ability to confer immunity to various pediocin-like bacteriocins. The specificities of the hybrid immunity proteins proved to be similar to those of the immunity proteins from which the C-terminal halves were derived, thus revealing that the C-terminal half of immunity proteins for pediocin-like bacteriocins contains a domain that is involved in specific recognition of the bacteriocins they confer immunity to. Moreover, the results also revealed that the effectiveness of an immunity protein is strain dependent and that its functionality thus depends in part on interplay with strain-dependent factors. To further investigate the structure-function relationship of these immunity proteins, the enterocin A and leucocin A immunity proteins (EntA-im and LeuA-im) were purified to homogeneity and structurally analyzed under various conditions by Circular dichroism (CD) spectroscopy. The results revealed that both immunity proteins are alpha-helical and well structured in an aqueous environment, the denaturing temperature being 78.5 degrees C for EntA-im and 58.0 degrees C for LeuA-im. The CD spectra also revealed that there was no further increase in the structuring or alpha-helical content when the immunity proteins were exposed to dodecylphosphocholine micelles or dioleoyl-L-alpha-phosphatidyl-DL-glycerol (DOPG) liposomes, indicating that the immunity proteins, in contrast to the bacteriocins, do not interact extensively with membranes. They may nevertheless be loosely associated with the membrane, possibly as peripheral membrane proteins, thus enabling them to interact with their cognate bacteriocin.  相似文献   

2.
Partial deletions in the immunity gene of the colicin E3 operon were used to study possible functions of the immunity protein besides protection against exogenous colicin. Nuclease BAL-31 was used to create a series of carboxyl-terminal deletions of the immunity gene. Mutants displaying lowered immunity against exogenous colicin were found, and six that had reduced but detectable levels of immunity were chosen for further analysis. DNA sequence analysis of the deletions showed that all six terminated within the last five codons of the immunity gene. The wild-type immunity gene was replaced by each of the six mutated immunity genes in a plasmid containing an otherwise functional colicin E3 operon. Transformants containing the resulting plasmids produced smaller colonies on solid medium and grew more slowly in liquid culture than transformants carrying the wild-type colicin and immunity genes. This result suggested that immunity protein was required to protect the cell against endogenous colicin E3. This idea was confirmed in experiments in which the colicin E3 and immunity genes were independently cloned on two compatible plasmid vectors.  相似文献   

3.
We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter.  相似文献   

4.
Under appropriate conditions of transmission intensity, functional immunity to malaria appears to be acquired in distinct stages. The first phase reduces the likelihood of severe or fatal disease; the second phase limits the clinical impact of 'mild' malaria; and the third provides partial but incomplete protection against pathogen burden. These findings suggest clinical immunity to mortality and morbidity is acquired earlier, with greater ease, and via distinct mechanisms as compared to anti-parasite immunity, which is more difficult to achieve, takes longer and is only ever partially efficacious. The implications of this view are significant in that current vaccination strategies aim predominantly to achieve anti-parasite immunity, although imparting clinical immunity is the public health objective. Despite enormous relevance for global public health, the mechanisms governing these processes remain obscure. Four candidate mechanisms might mediate clinical immunity, namely immunity to cytoadherence determinants, tolerance to toxins, acquired immunity to toxins, and immunoregulation. This review addresses the targets and determinants of clinical immunity, and considers the implications for vaccine development.  相似文献   

5.
We have investigated the immunity to E colicins conferred by three group A klebicin plasmids. pP5a, which encodes klebicin A1-P5, like pClo-DF13, confers immunity to colicin E6 on Escherichia coli K12, whilst pP5b and pP3, which encode klebicins A2-P5 and A3-P3 respectively, both confer immunity to colicin E3. We have determined the restriction endonuclease and functional maps of the three group A klebicin plasmids. By sub-cloning and transposon mutagenesis we have investigated the relationship between the klebicin immunity and the E colicin immunity conferred by these plasmids. The colicin E6 and the klebicin A1 immunity are encoded by a single gene present on pP5a. The colicin E3 and the klebicin A2 immunity are encoded by a single gene present on pP5b. The colicin E3 and the klebicin A3 immunity are encoded by separate genes present on pP3. Recombinant pML8412, which is derived from the ColE6-CT14 plasmid and encodes colicin E6 immunity, confers klebicin A1-P5 immunity upon Klebsiella pneumoniae UNF5023. Recombinant pKC23, which is derived from the ColE3-CA38 plasmid and confers colicin E3 immunity, confers immunity to klebicin A2-P5, but not to klebicin A3-P3.  相似文献   

6.
The nucleotide sequences for colicin Ia and colicin Ib structural and immunity genes were determined. The two colicins each consist of 626 amino acid residues. Comparison of the two sequences along their lengths revealed that the two colicins are nearly identical in the N-terminal 426 amino acid residues. The C-terminal 220 amino acid residues of the colicins are only 60% identical, suggesting that this is the region most likely recognized by their cognate immunity proteins. The predicted proteins for the colicin immunity proteins would contain 111 amino acids for the colicin Ia immunity protein and 115 amino acids for the colicin Ib immunity protein. The colicin immunity proteins have no detectable DNA or amino acid homology but do exhibit a conservation of overall hydrophobicity. The colicin immunity genes lie distal to and in opposite orientation to the colicin structural genes. The colicin Ia immunity protein was purified to apparent homogeneity by a combination of isoelectric focusing and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified Ia immunity protein was determined and was found to be in perfect agreement with that predicted from the DNA sequence of its structural gene. The Ia immunity protein is not a processed membrane protein.  相似文献   

7.
He P  Shan L  Sheen J 《Cellular microbiology》2007,9(6):1385-1396
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.  相似文献   

8.
BALB/c mice develop specific and relatively long lasting immunity after exposure to sublethal numbers of viable Listeria monocytogenes. This immunity can be passively transferred to naive recipients with maximal protection conferred by spleen cells obtained from donors 6 days after immunization. Immunity that can be directly transferred to syngeneic recipients is surprisingly short lived. Cell recipients lose immunity as early as 72 hr after transfer, and recipients express no detectable immunity after 1 wk. This short lived immunity requires both L3T4+ and Lyt-2+ T cell populations for full expression. Both the level of immunity transferred and the duration of the protective response expressed in recipients are dramatically increased if the spleen cell population is cultured in vitro with concanavalin A before cell transfer. Recipients of concanavalin A-activated cells express antigen-specific levels of immunity increased 100- to 1000-fold compared with syngeneic recipients of directly transferred immune spleen cells. In addition, this elevated level of adoptively transferred immunity remains constant for at least 8 wk. Transfer of this culture-enhanced immunity requires only an Lyt-2+ T cell population and is not influenced by cells of the L3T4+T cell subpopulation. Both direct as well as culture-enhanced transfer of immunity require major histocompatibility complex-compatible recipients. These findings suggest that two phenotypically distinct T cell subpopulations function in the development of the immune response to L. monocytogenes and that only one cell subpopulation is required for expression of immunity to this intracellular parasite.  相似文献   

9.
The nucleotide sequence of the Clo DF13 DNA region comprising the immunity gene has been determined. We also elucidated the aminoacid sequence of the 40 N-terminal and 7 C-terminal aminoacids of the purified immunity protein. From analysis of the data obtained we were able to locate the immunity gene between 11.7 and 14.5% on the Clo DF13 map, and to determine the complete aminoacid sequence of the immunity protein. It was observed that the Clo DF13 immunity gene encodes an 85 aminoacid protein and is transcribed in the same direction as the cloacin gene. These experimental data support our model, presented elsewhere, which implicates that the cloacin and immunity genes of Clo DF13 are coordinately transcribed from the cloacin promoter. We also present DNA sequence data indicating that an extra ribosome binding site precedes the immunity gene on the polycistronic mRNA. This ribosome binding site might explain the fact that in cloacinogenic cells more immunity protein than cloacin is synthesized. The comparison of the complete aminoacid sequence of the Clo DF13 immunity protein, with the aminoacid sequence data of the purified, comparable Col E3 immunity protein revealed that both proteins have extensive homologies in primary and secondary structure, although they are exchangeable only to a low extent in vivo and in vitro. It was also observed that a lysine residue was modified in immunity protein isolated from excreted bacteriocin complexes.  相似文献   

10.
Nucleotide sequences required for Tn3 transposition immunity.   总被引:5,自引:3,他引:2       下载免费PDF全文
The Tn3 transposon inserts at a reduced frequency into a plasmid already containing a copy of Tn3, a phenomenon known as transposition immunity. The cis-acting site on Tn3 responsible for immunity was mapped by deletions from each side to be within the terminal 38-base-pair sequence that is inversely repeated at the ends of Tn3. Two palindromic sequences are present in the essential part of this region. Some deletions conferred only partial immunity, and others conferred negative immunity. Multiple copies of partially immune ends conferred additional immunity. No other part of Tn3 was necessary for immunity.  相似文献   

11.
Assessment of immunological status is a powerful tool in the surveillance and control of infectious pathogens in livestock and human populations. The distribution of immunity levels in the population provides information on time and age dependent transmission. A stochastic model is developed for a livestock population which relates the dynamics of the distribution of immunity levels at the population level to those of pathogen transmission. A general model with K immunity level categories is first proposed, taking into account the increase of the immunity level due to an infection or a re-exposure, the decrease of the immunity level with time since infection or exposure, and the effect of immunity level on the susceptibility and the infectivity of individuals. Numerical results are presented in the particular cases with K=2 and K=3 immunity level categories. We demonstrate that for a given distribution of the immunity levels at the population level, the model can be used to identify quantities such as most likely periods of time since introduction of infection. We discuss this approach in relation to analysis of serological data.  相似文献   

12.
Construction of hybrid immunity genes between colicin U (cui) and Y (cyi) immunity genes and site-directed mutagenesis of cyi were used to identify amino-acid residues of the colicin Y immunity protein (Cyi) involved in recognition of colicin Y. These amino-acid residues were localized close to the cytoplasmic site of the Cyi transmembrane helices T3 (S104, S107, F110, A112) and T4 (A159). Mutations in cui, which converted Cui sequence to Cyi sequence in positions 104, 107, 110, 112 and 159, resulted in an immunity gene that also conferred (besides immunity to colicin U) a high degree of immunity to colicin Y.  相似文献   

13.
研制能同时诱导有效黏膜免疫和系统免疫的疫苗是预防黏膜感染病原体的理想目标。消化道具有许多产生黏膜免疫的位点,包括口腔、胃和小肠等。理想的口服病毒疫苗不仅能诱导较好的局部及远端黏膜免疫,也能产生较好的系统免疫,而且还因为具有无痛接种、可自行服用等优势而备受关注。由于人消化道环境及黏膜免疫的复杂性,目前成功上市的人口服病毒疫苗仅限于3种减毒活疫苗。本文将从消化道黏膜免疫的特点、当前口服病毒疫苗种类及研究现状、口服病毒疫苗所面临的挑战等方面进行综述,期望对我国人口服病毒疫苗的研究和开发提供参考和借鉴。  相似文献   

14.
Mating and immunity are intimately linked to fitness. In both vertebrates and invertebrates, recent investigations into mate choice for immunity, tradeoffs between reproduction and immunity, and the relationships between post-mating processes and immune function have revealed that mating and immunity are also intimately linked to each other. Here, we focus on invertebrates and critically examine the evidence that immunity is under sexual selection, both pre- and post-mating, and explore other hypotheses linking mating and immunity. We find little evidence for a consensus regarding which theories best account for the accumulating empirical data. However, we suggest that progress can quickly be made by exploiting the intrinsic strengths of invertebrate model systems.  相似文献   

15.
For the first time immunological interrelations between S. sonnei differing in enzymatic activity and colicinogenicity were studied. Specific postinfectious immunity against Shigella pneumonia in intranasally infected mice was used as a model for testing S. sonnei strains, biovars II and III, with colicinogenic markers designated S5 and IE2, respectively. The development of homologous and heterologous immunity was shown to occur in the animals; immunity to the more virulent strain II S5 proved to be significantly more intense than in comparison with immunity to the less virulent strain III IE2. The unequal effectiveness of immunity to these strains (the more virulent were the strains, the more effective immunity they produced) was due to the fact that their populations contained different amounts of organisms in phase I responsible for infective action and immunity, and also, which was heretofore unknown, for the sensitivity of these bacteria to immunological action: the greater their virulence, the greater their sensitivity.  相似文献   

16.
无颌类脊椎动物适应性免疫系统的进化   总被引:1,自引:0,他引:1  
刘岑杰  黄惠芳  马飞  刘欣  李庆伟 《遗传》2008,30(1):13-19
适应性免疫系统的起源与进化问题一直是人们研究的热点, 以七鳃鳗为代表的无颌类脊椎动物, 被普遍认为处在进化出适应性免疫系统的边缘。因此, 研究无颌类脊椎动物适应性免疫的机制, 对揭示适应性免疫系统的起源与进化具有重要意义。研究表明, 无颌类在一定范围内具有高等脊椎动物特有的适应性免疫特征, 并发现了一些在结构或功能上与高等脊椎动物免疫相关基因同源的免疫因子。文章就近年来对无颌类脊椎动物适应性免疫系统机制的研究进展作一概述, 为进一步深入研究脊椎动物适应性免疫系统的起源与进化提供有益的参考。  相似文献   

17.
Lactic acid bacteria produce and secrete bacteriocins. These bacteriocins are potent antimicrobial peptides that are active against other closely related bacteria. As a means of self-protection, producer organisms also express immunity proteins. Immunity proteins are generally located on the same genetic locus and are cotranscribed with the bacteriocin. Although some cross immunity between bacteriocins has been observed, immunity proteins are typically highly specific. Immunity proteins for the type IIa bacteriocins range from 81 to 115 amino acids in length and display substantial variation in their sequences. Nonetheless, such immunity proteins have been classified into three groupings (groups A, B, and C) according to sequence homology. The structures of a group C (ImB2) and two group A (EntA-im and PedB) immunity proteins have previously been reported. We herein report the nuclear magnetic resonance solution structure of the remaining class of the type IIa immunity proteins. PisI, a 98-amino acid protein, is a group B immunity protein conferring immunity against piscicolin 126 (PisA). Like ImB2, EntA-im, and PedB, PisI folds into a globular protein in aqueous solution and contains an antiparallel four-helix bundle. Compared to ImB2 and EntA-im, PisI has a substantially longer and more flexible N-terminus, but a shorter C-terminus. No direct interaction between the bacteriocin and immunity protein is observed by NMR in either aqueous or membrane mimicking environments. This further suggests that the mechanism that mediates immunity is not due to a direct bacteriocin-immunity protein interaction but rather is receptor-mediated. It has now been confirmed that the four-helix bundle is indeed a structural motif among the type IIa immunity proteins.  相似文献   

18.
Abstract Immunity proteins are thought to protect bacteriocin-producing bacterial strains against the bactericidal effects of their own bacteriocin. The immunity protein which protects the lactic acid bacterium Leuconostoc mesenteroides against mesentericin Y10537 bacteriocin was detected and localized by immunofluorescence and electron microscopy, using antibodies directed against the C-terminal end of the predicted immunity protein. The antibodies recognized the immunity proteins of various strains of Leuconostoc , including Leuconostoc mesenteroides and Leuconostoc gelidum . This study demonstrated that immunity proteins produced by Leuconostoc mesenteroides accumulated in the cytoplasmic compartment of the bacteria. This is in contrast with other known immunity proteins, such as the colicin immunity proteins, which are integral membrane proteins possessing three to four transmembrane domains.  相似文献   

19.
Through analyzing the immunity indicators in recent crustacean research, two defects are pointed in comprehensive immunity evaluation, 1) the integrant indicators cannot comprehensively reflect the change of immunity, and 2) the conclusions that obtained from different indicators of immunity level cannot be compared objectively and scientifically. Basing on that, the paper firstly indicated that the immunity system could be regarded as a composite indicator. Secondly, the paper gave the specific definition of the composite immunity indicator (CII), and discussed the methods of calculation, especially provided two calculation methods of the weights, that is, the Analytic Hierarchy Process (AHP) and the Principal Component Analysis (PCA). Finally, examples were given to clarify the specific steps to compute the composite immunity indicator. The computing results gave the quantitative evaluation, which were in concordance with the existing conclusions.  相似文献   

20.
Among reactions of innate immunity, resistance of human peripheral blood leukocytes (PBL) to viral infection seems important. The purpose of our study was to find, which of the subpopulations of PBL is the most responsible for the innate antiviral immunity of these cells. The innate immunity was measured by using the direct method of infection of leukocytes with vesicular stomatitis virus (VSV). The lack of VSV replication by infected leukocytes (0-1 log TCID50) was taken as an indicator for complete immunity; a low level of VSV (2-3 log) for partial immunity; and high VSV titer (more than 4 log) for no immunity. The resistance/innate immunity of whole PBL and subpopulations such as: adherent cells, fractions enriched in lymphocytes T, and lymphocytes B (separated on column with nylon wool), NK(+) and NK(-) (separated by microbeads activated cell sorting MACS) differ from each other. All fractions express higher resistance/innate immunity than the whole PBL. NK(+) cells were found the most resistant fraction of PBL to VSV infection. The results indicate that among the leukocytes in PBL the regulation mechanisms of innate immunity exist. The study on the mechanism of innate immunity regulation as well as the role of NK in innate immunity of PBL must be continued.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号