共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Jing Yang Xiaoyue Pan Yujuan Xu Yuan Li Nan Xu Zhiwei Huang Jingyang Ye Dawei Gao Minliang Guo 《Molecular Plant Pathology》2020,21(9):1167-1178
Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (D NA binding p rotein from s tarved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival. 相似文献
4.
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis. 相似文献
5.
The most prominent role of mammalian ferritins is to provide an extensive iron-buffering capacity to cells. The large ferritin iron stores can be mobilized in vitro, but the functional relevance of the most efficient iron releasing agents remains elusive. Sulfide is a strongly reducing chemical generated by a series of enzymes. In the presence of limited amounts of sulfide a continuous rate of iron release from ferritin was observed and a majority of the protein iron core was recovered in solution. The rate constants for iron efflux triggered by several reducing or chelating compounds have been measured and compared. Although not as efficient as reduced flavins, sulfide displayed kinetic parameters which suggest a potential physiological role for the chalcogenide in converting the iron storage protein into apoferritin. To further probe the relevance of sulfide in the mobilization of iron, several enzymes, such as NifS, rhodanese, or sulfite reductase generating reduced forms of sulfur by different mechanisms, have been assayed for their ability to catalyze the release of iron from ferritin. The results show that full reduction of sulfur into sulfide is needed to deplete iron from ferritin. These reactions suggest links between sulfur metabolism and intracellular iron homeostasis. 相似文献
6.
7.
The role of the mitochondrion in cellular iron homeostasis 总被引:1,自引:0,他引:1
The yeast ATM1 protein is essential for normal mitochondrial iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and oxidative mitochondrial damage. Mutations in ABC7, the human homolog of ATM1, result in X-linked sideroblastic anemia and ataxia. Here we show that a deletion of ATM1 also has effects on extra-mitochondrial iron metabolism. ATM1-deficient cells have an increased iron requirement for growth. When grown in iron-rich medium, mutant cells accumulate excess mitochondrial iron and have increased expression of the genes required for both high and low affinity iron uptake. Thus, ATM1 mutant cells simultaneously demonstrate features of both iron overload and iron starvation. Yfh1p is the yeast homolog of the human frataxin protein, which is deficient in Friedreich's ataxia. As in atm1 cells, a yfh1 deletion results in both mitochondrial iron accumulation and cytosolic iron starvation. In spite of their apparent roles in cellular iron homeostasis, we find that the expression of neither ATM1 nor YFH1 is responsive to cellular iron status. Based on these observations, we propose a model in which cellular iron is prioritized for use by the mitochondrion, and available to the remainder of the cell only after mitochondrial needs have been fulfilled. 相似文献
8.
Rouault TA 《Nature chemical biology》2006,2(8):406-414
9.
Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field. 相似文献
10.
Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal epithelia cells sense body iron through the basolateral endocytosis of plasma transferrin. Transferrin endocytosis results in enterocytes whose iron content will depend on the iron saturation of plasma transferrin. Cell iron levels, in turn, inversely correlate with intestinal iron absorption. In this study, we examined the relationship between the regulation of intestinal iron absorption and the regulation of intracellular iron levels by Caco-2 cells. We asserted that IRP activity closely correlates with apical iron uptake and transepithelial iron transport. Moreover, overexpression of IRE resulted in a very low labile or reactive iron pool and increased apical to basolateral iron flux. These results show that iron absorption is primarily regulated by the size of the labile iron pool, which in turn is regulated by the IRE/IRP system. 相似文献
11.
Effects of AZT on cellular iron homeostasis 总被引:1,自引:0,他引:1
Argante Bozzi Fabrizia Brisdelli Anna M. D'Alessandro Gabriele D'Andrea Anna R. Lizzi Andrea C. Rinaldi Arduino Oratore 《Biometals》2004,17(4):443-450
3'-azido-3'-deoxythymidine (AZT), the first chemotherapeutic drug approved by FDA for treatment of HIV-infected patients and still used in combination therapy, has been shown to induce, upon prolonged exposure, severe bone marrow toxicity manifested as anemia, neutropenia and siderosis. These toxic effects are caused by inhibition of heme synthesis and, as a consequence, transferrin receptor (TfR) number appears increased and so iron taken up by cells. Since iron overload can promote the frequency and severity of many infections, siderosis is viewed as a further burden for AIDS patients. We have previously demonstrated that AZT-treated K562 cells showed an increase of the number of TfRs located on the surface of the plasma membrane without affecting their biosynthesis, but slowing down their endocytotic pathway. In spite of the higher number of receptors on the plasma-membrane of AZT-treated cells, intracellular accumulation of iron showed a similar level in control and in drug-exposed cells. The chelating ability of AZT and of its phosphorylated derivatives, both in an acellular system and in K562 cells, was also checked. The results demonstrated that AZT and AZTMP were uneffective as iron chelators, while AZTTP displayed a significant capacity to remove iron from transferrin (Tf). Our results suggest that AZT may be not directly involved in the iron overloading observed upon its prolonged use in AIDS therapy. The iron accumulation found in these patients is instead caused by other unknown mechanisms that need further studies to be clarified. 相似文献
12.
13.
Ferritin,iron homeostasis,and oxidative damage 总被引:17,自引:0,他引:17
Ferritin is one of the major proteins of iron metabolism. It is almost ubiquitous and tightly regulated by the metal. Biochemical and structural properties of the ferritins are largely conserved from bacteria to man, although the role in the regulation of iron trafficking varies in the different organisms. Recent studies have clarified some of the major aspects of the reaction between iron and ferritin, which results in the formation of the iron core and production of hydrogen peroxide. The characterization of cellular models in which ferritin expression is modulated has shown that the ferroxidase catalytic site on the H-chain has a central role in regulating iron availability. In turn, this has secondary effects on a number of cellular activities, which include proliferation and resistance to oxidative damage. Moreover, the response to apoptotic stimuli is affected by H-ferritin expression. Altered ferritin L-chain expression has been found in at least two types of genetic disorders, although its role in the determination of the pathology has not been fully clarified. The recent discovery of a new ferritin specific for the mitochondria, which is functionally similar to the H-ferritin, opens new perspectives in the study of the relationships between iron, oxidative damage and free radicals. 相似文献
14.
Frank PG Cheung MW Pavlides S Llaverias G Park DS Lisanti MP 《American journal of physiology. Heart and circulatory physiology》2006,291(2):H677-H686
Caveolae are 50- to 100-nm cell surface plasma membrane invaginations present in terminally differentiated cells. They are characterized by the presence of caveolin-1, sphingolipids, and cholesterol. Caveolin-1 is thought to play an important role in the regulation of cellular cholesterol homeostasis, a process that needs to be properly controlled to limit and prevent cholesterol accumulation and eventually atherosclerosis. We have recently generated caveolin-1-deficient [Cav-1(-/-)] mice in which caveolae organelles are completely eliminated from all cell types, except cardiac and skeletal muscle. In the present study, we examined the metabolism of cholesterol in wild-type (WT) and Cav-1(-/-) mouse embryonic fibroblasts (MEFs) and mouse peritoneal macrophages (MPMs). We observed that Cav-1(-/-) MEFs are enriched in esterified cholesterol but depleted of free cholesterol compared with their wild-type counterparts. Similarly, Cav-1(-/-) MPMs also contained less free cholesterol and were enriched in esterified cholesterol on cholesterol loading. In agreement with this finding, caveolin-1 deficiency was associated with reduced free cholesterol synthesis but increased acyl-CoA:cholesterol acyl-transferase (ACAT) activity. In wild-type MPMs, we observed that caveolin-1 was markedly upregulated on cholesterol loading. Despite these differences, cellular cholesterol efflux from MEFs and MPMs to HDL was not affected in the Cav-1-deficient cells. Neither ATP-binding cassette transporter G1 (ABCG1)- nor scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux was affected. Cellular cholesterol efflux to apolipoprotein A-I was not significantly reduced in Cav-1(-/-) MPMs compared with wild-type MPMs. However, ABCA1-mediated cholesterol efflux was clearly more sensitive to the inhibitory effects of glyburide in Cav-1(-/-) MPMs versus WT MPMs. Taken together, these findings suggest that caveolin-1 plays an important role in the regulation of intracellular cholesterol homeostasis and can modulate the activity of other proteins that are involved in the regulation of intracellular cholesterol homeostasis. 相似文献
15.
Davidson T Chen H Garrick MD D'Angelo G Costa M 《Molecular and cellular biochemistry》2005,279(1-2):157-162
Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may contribute to carcinogenesis
is unclear, though several hypotheses have been proposed. Here we verify the ability of nickel to enter the cell via the divalent
metal ion transporter 1 (DMT1) and disturb cellular iron homeostasis. Nickel may interfere with iron at both an extracellular
level, by preventing iron from being transported into the cell, and at an intracellular level, by competing for iron sites
on enzymes like the prolyl hydroxylases that modify hypoxia inducible factor-1α (HIF-1α). Nickel was able to decrease the
binding of the Von Hippel–Lindau (VHL) protein to HIF-1α, indicating a decrease in prolyl hydroxylase activity. The ability
of nickel to affect various iron dependent processes may be an important step in nickel dependent carcinogenesis. In addition,
understanding the mechanisms by which nickel activates the HIF-1α pathway may lead to new molecular targets in fighting cancer. 相似文献
16.
The pivotal role of ferritin in cellular iron homeostasis 总被引:2,自引:0,他引:2
E Mattia J van Renswoude 《BioEssays : news and reviews in molecular, cellular and developmental biology》1988,8(4):107-111
Iron delivered by transferrin to the interior of the cell is in part utilized in biosynthetic processes and in part incorporated into ferritin, the major iron storage protein. The intracellular ferritin concentration is directly correlated to and determined by the extent of iron supply to the cell. Intracellular partitioning of iron to ferritin is suggested as forming the basis of cellular iron homeostasis. 相似文献
17.
18.
A Bezkorovainy 《Clinical physiology and biochemistry》1989,7(1):1-17
Total plasma iron turnover in man is about 36 mg/day. Transferrin is the iron transport protein of plasma, which can bind 2 atoms of iron per protein molecule, and which interacts with various cell types to provide them with the iron required for their metabolic and proliferative processes. All tissues contain transferrin receptors on their plasma membrane surfaces, which interact preferentially with diferric transferrin. In erythroid cells as well as certain laboratory cell lines, the removal of iron from transferrin apparently proceeds via the receptor-mediated endocytosis process. Transferrin and its receptor are recycled to the cell surface, whereas the iron remains in the cell. The mode of iron uptake in the hepatocyte, the main iron storage tissue, is less certain. The release of iron by hepatocytes, as well as by the reticuloendothelial cells, apparently proceeds nonspecifically. All tissues contain the iron storage protein ferritin, which stores iron in the ferric state, though iron must be in the ferrous state to enter and exit the ferritin molecule. Cellular cytosol also contains a small-molecular-weight ferrous iron pool, which may interact with protoporphyrin to form heme, and which apparently is the form of iron exported by hepatocytes and macrophages. In plasma, the ferrous iron is converted into the ferric form via the action of ceruloplasmin. 相似文献
19.
Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis 总被引:2,自引:0,他引:2
Ravet K Touraine B Boucherez J Briat JF Gaymard F Cellier F 《The Plant journal : for cell and molecular biology》2009,59(3):400-412
Ferritin protein nanocages are the main iron store in mammals. They have been predicted to fulfil the same function in plants but direct evidence was lacking. To address this, a loss-of-function approach was developed in Arabidopsis. We present evidence that ferritins do not constitute the major iron pool either in seeds for seedling development or in leaves for proper functioning of the photosynthetic apparatus. Loss of ferritins in vegetative and reproductive organs resulted in sensitivity to excess iron, as shown by reduced growth and strong defects in flower development. Furthermore, the absence of ferritin led to a strong deregulation of expression of several metal transporters genes in the stalk, over-accumulation of iron in reproductive organs, and a decrease in fertility. Finally, we show that, in the absence of ferritin, plants have higher levels of reactive oxygen species, and increased activity of enzymes involved in their detoxification. Seed germination also showed higher sensitivity to pro-oxidant treatments. Arabidopsis ferritins are therefore essential to protect cells against oxidative damage. 相似文献
20.
The iron redox and hydrolysis chemistry of the ferritins 总被引:2,自引:0,他引:2