首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.  相似文献   

2.
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain.  相似文献   

3.
The receptive field of a visual neurone is classically defined as the region of space (or retina) where a visual stimulus evokes a change in its firing activity. Intracellular recordings in cat area 17 show that the visually evoked synaptic integration field extends over a much larger area than that established on the basis of spike activity. Synaptic depolarizing (dominant excitation) responses decrease in strength for stimuli that are flashed at increasing distances away from the centre of the discharge field, while their onset latency increases. A detailed spatio-temporal analysis of these electrophysiological data shows that subthreshold synaptic responses observed in the 'silent' surround of cortical receptive fields result from the intracortical spread of activation waves carried by slowly conducting horizontal axons within primary visual cortex. They also predict that a perceptual facilitation may occur when feedforward activation produced by the motion signal in the retina travels in phase in the primary visual cortex with the visually induced spread of horizontal activation. A psychophysical correlate has been obtained in humans, showing that apparent motion produced by a sequence of co-linear Gabor patches, known to preferentially activate V1 orientation selective cells, are perceived by human observers as much faster than non co-linear sequences of the same physical speed.  相似文献   

4.
A discrete neural net was used for simulation of cross-sensitivity in 40% of neurones of the cat visual cortex' area 17th. It is based on disinhibition of the end-stopping inhibition in receptive field from the side-disinhibitory zone. Highly selective or invariant sensitivity of the simulated neurone in respect to shape and orientation of a cross-like figure was observed under changes of location, size and weight of the receptive field zones. The disinhibitory mechanism seems to be critically involved in the selection of the second-order features of the images in the primary visual cortex.  相似文献   

5.
Pack CC  Born RT  Livingstone MS 《Neuron》2003,37(3):525-535
The analysis of object motion and stereoscopic depth are important tasks that are begun at early stages of the primate visual system. Using sparse white noise, we mapped the receptive field substructure of motion and disparity interactions in neurons in V1 and MT of alert monkeys. Interactions in both regions revealed subunits similar in structure to V1 simple cells. For both motion and stereo, the scale and shape of the receptive field substructure could be predicted from conventional tuning for bars or dot-field stimuli, indicating that the small-scale interactions were repeated across the receptive fields. We also found neurons in V1 and in MT that were tuned to combinations of spatial and temporal binocular disparities, suggesting a possible neural substrate for the perceptual Pulfrich phenomenon. Our observations constrain computational and developmental models of motion-stereo integration.  相似文献   

6.
Neurons responding to tactile and visual stimulation were found in the caudal section of the cruciate slucus ventral bank in awake cats. Tactile receptive fields were located on the face, mainly around the mouth. Visual stimuli evoked a response when presented close to the tactile receptive field. It was found that the visual responses of these bimodal neurons located in layer VI of the cortex display spatial consistency. The position of these visual receptive fields remained constant through saccadic eye movements, while still linked to the tactile receptive field.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neifofiziologiya, Vol. 18, No. 6, pp. 800–805, November–December, 1986.  相似文献   

7.
Neurons in posterior parietal cortex of the awake, trained monkey respond to passive visual and/or somatosensory stimuli. In general, the receptive fields of these cells are large and nonspecific. When these neurons are studied during visually guided hand movements and eye movements, most of their activity can be accounted for by passive sensory stimulation. However, for some visual cells, the response to a stimulus is enhanced when it is to be the target for a saccadic eye movement. This enhancement is selective for eye movements into the visual receptive field since it does not occur with eye movements to other parts of the visual field. Cells that discharge in association with a visual fixation task have foveal receptive fields and respond to the spots of light used as fixation targets. Cells discharging selectively in association with different directions of tracking eye movements have directionally selective responses to moving visual stimuli. Every cell in our sample discharging in association with movement could be driven by passive sensory stimuli. We conclude that the activity of neurons in posterior parietal cortex is dependent on and indicative of external stimuli but not predictive of movement.  相似文献   

8.
The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.  相似文献   

9.
Invariant representations of stimulus features are thought to play an important role in producing stable percepts of objects. In the present study, we assess the invariance of neural representations of tactile motion direction with respect to other stimulus properties. To this end, we record the responses evoked in individual neurons in somatosensory cortex of primates, including areas 3b, 1, and 2, by three types of motion stimuli, namely scanned bars and dot patterns, and random dot displays, presented to the fingertips of macaque monkeys. We identify a population of neurons in area 1 that is highly sensitive to the direction of stimulus motion and whose motion signals are invariant across stimulus types and conditions. The motion signals conveyed by individual neurons in area 1 can account for the ability of human observers to discriminate the direction of motion of these stimuli, as measured in paired psychophysical experiments. We conclude that area 1 contains a robust representation of motion and discuss similarities in the neural mechanisms of visual and tactile motion processing.  相似文献   

10.
Unit responses to moving strips were investigated. The organization of the inhibitory zones in the receptive fields of the lateral geniculate body and visual cortex of the cat was compared. The response in the receptive field of the lateral geniculate body was inhibited only during simultaneous stimulation of the excitatory and inhibitory zones of the field. Stimulation of the inhibitory zone in the receptive field of the visual cortex was effective for a long time (several hundreds of milliseconds) after stimulation of the excitatory zone. The inhibitory zones of the simple and complex receptive fields of the visual cortex differed significantly. An increase in the width of the strip above the optimal size reduced the inhibitory effect in the complex fields. This was not observed in the simple receptive fields. The functional and structural models of the receptive field of the visual cortex are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 201–209, March–April, 1973.  相似文献   

11.
Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.  相似文献   

12.
Gilbert C 《Current biology : CB》2007,17(11):R412-R414
Newly described visual interneurons in flies have sophisticated receptive field properties reminiscent of neurons in the mammalian visual cortex. The cells are well-suited to compute motion of conspecific females that male flies aerially intercept.  相似文献   

13.
Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position desparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.  相似文献   

14.
When a single object lies in front of or beyond the plane of fixation its retinal image lies on disparate positions in the two eyes. This 'local' retinal disparity is an excellent cue to depth, and retinal disparties of a few seconds of arc are detectable by people and monkeys. However, most visual scenes produce a complex array of contours in each eye and we can detect the disparity in the arrays despite the ambiguous nature of the disparities, i.e. each contour in one eye could be related to any of several similar contours in the other eye. This ability, known as 'global' stereopsis, may be selectively impaired following brain damage in man. Global stereopsis was measured in rhesus monkeys before and after removing a different cortical visual area in different groups of animals. Only removal of the inferotemporal cortex impaired global stereopsis. The result is related to the findings with human patients and to receptive field properties of neurons in the inferotemporal cortex of monkeys.  相似文献   

15.
Single cell recording studies have resulted in a detailed understanding of motion-sensitive neurons in non-human primate visual cortex. However, it is not known to what extent response properties of motion-sensitive neurons in the non-human primate brain mirror response characteristics of motion-sensitive neurons in the human brain. Using a motion adaptation paradigm, the direction aftereffect, we show that changes in the activity of human motion-sensitive neurons to moving dot patterns that differ in dot density bear a strong resemblance to data from macaque monkey. We also show a division-like inhibition between neural populations tuned to opposite directions, which also mirrors neural-inhibitory behaviour in macaque. These findings strongly suggest that motion-sensitive neurons in human and non-human primates share common response and inhibitory characteristics.  相似文献   

16.
Tsao DY  Conway BR  Livingstone MS 《Neuron》2003,38(1):103-114
Binocular simple cells in primary visual cortex (V1) are the first cells along the mammalian visual pathway to receive input from both eyes. Two models of how binocular simple cells could extract disparity information have been put forward. The phase-shift model proposes that the receptive fields in the two eyes have different subunit organizations, while the position-shift model proposes that they have different overall locations. In five fixating macaque monkeys, we recorded from 30 disparity-tuned simple cells that showed selectivity to the disparity in a random dot stereogram. High-resolution maps of the left and right eye receptive fields indicated that both phase and position shifts were common. Single cells usually showed a combination of the two, and the optimum disparity was best correlated with the sum of receptive field phase and position shift.  相似文献   

17.
How do we see the motion of objects as well as their shapes? The Gaussian Derivative (GD) spatial model is extended to time to help answer this question. The GD spatio-temporal model requires only two numbers to describe the complete three-dimensional space-time shapes of individual receptive fields in primate visual cortex. These two numbers are the derivative numbers along the respective spatial and temporal principal axes of a given receptive field. Nine transformation parameters allow for a standard geometric association of these intrinsic axes with the extrinsic environment. The GD spatio-temporal model describes in one framework the following properties of primate simple cell fields: motion properties, number of lobes in space-time, spatial orientation. location, and size. A discrete difference-of-offset-Gaussians (DOOG) model provides a plausible physiological mechanism to form GD-like model fields in both space and time. The GD model hypothesizes that receptive fields at the first stage of processing in the visual cortex approximate 'derivative analyzers' that estimate local spatial and temporal derivatives of the intensity profile in the visual environment. The receptive fields as modeled provide operators that can allow later stages of processing in either a biological or machine vision system to estimate the motion as well as the shapes of objects in the environment.  相似文献   

18.
A model of motion sensitivity as observed in some cells of area V1 of the visual cortex is proposed. Motion sensitivity is achieved by a combination of different spatiotemporal receptive fields, in particular, spatial and temporal differentiators. The receptive fields emerge if a Hebbian learning rule is applied to the network. Similar to a Linsker model the network has a spatially convergent, linear feedforward structure. Additionally, however, delays omnipresent in the brain are incorporated in the model. The emerging spatiotemporal receptive fields are derived explicitly by extending the approach of MacKay and Miller. The response characteristic of the network is calculated in frequency space and shows that the network can be considered as a spacetime filter for motion in one direction. The emergence of different types of receptive field requires certain structural constraints regarding the spatial and temporal arborisation. These requirements can be derived from the theoretical analysis and might be compared with neuroanatomical data. In this way an explicit link between structure and function of the network is established.  相似文献   

19.
Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.  相似文献   

20.
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号