首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
5.
Cell-cycle regulation of histone gene expression   总被引:46,自引:0,他引:46  
D Schümperli 《Cell》1986,45(4):471-472
  相似文献   

6.
De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of two important signaling cascades.  相似文献   

7.
8.
9.
10.
Histone methylation plays an important role in epigenetic regulation of gene expression. Reversible methylation/demethylation of several histone lysine residues is mediated by distinct histone methyltransferases and histone demethylases. Jumonji proteins have been characterized to be involved in histone demethylation. Plant Jumonji homologues are found to have important functions in epigenetic processes, gene expression and plant development and to play an essential role in interplay between histone modifications and DNA methylation. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.  相似文献   

11.
12.
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.  相似文献   

13.
Cell cycle-dependent regulation of eukaryotic DNA methylase level   总被引:8,自引:0,他引:8  
DNA methylase activity in the nuclei of somatic cells arrested at G0 increased markedly when the cells were subjected to a mitogenic stimulus. Treatment of mouse splenocytes with Concanavalin A resulted in about 20-fold increase in methylase activity within 20 h starting 12-15 h after Concanavalin A addition. The methylase level in rat liver was elevated approximately 3-fold at about 20-h posthepatectomy. A detailed time course of the increase in methylase activity with respect to the cell cycle revealed that the onset of this event coincided with the entry of the cells into S phase. In both systems, the extent of methylation in CpG sequences is not altered significantly even under conditions of active DNA synthesis which is induced by the mitogenic effect. These results suggest that the cell responds to the mitogenic stimulus by adjusting the DNA methylase activity to enable conservation of the methylation level in DNA.  相似文献   

14.
Cell cycle-dependent regulation of the DNA-dependent protein kinase   总被引:1,自引:0,他引:1  
  相似文献   

15.
Consistent with its specialized role in DNA synthesis, the activity of ribonucleotide reductase is cell cycle-dependent, reaching its maximum during S-phase. This paper demonstrates, however, the levels of the two protein subunits, M1 and M2, of this enzyme vary independently of one another. The level of protein M1 was determined by use of a two-site monoclonal antibody-enzyme immunoassay and found to be constant throughout the cell cycle in bovine kidney MDBK cells. Pulse-chase experiments showed that the half-life of protein M1 was 15 h. This contrasts with our previous results demonstrating an S-phase-correlated increase in the concentration of protein M2 and a half-life of this subunit of 3 h. Therefore, ribonucleotide reductase is controlled during the cell cycle by the level of protein M2.  相似文献   

16.
TAF-I, one of histone chaperones, consists of two subtypes, TAF-Iα and TAF-Iβ. The histone chaperone activity of TAF-I is regulated by dimer patterns of these subtypes. TAF-Iβ is expressed ubiquitously, while the expression level of TAF-Iα with less activity than TAF-Iβ differs among cell types. It is, therefore, assumed that the expression level of TAF-Iα in a cell is important for the TAF-I activity level. Here, we found that TAF-Iα and TAF-Iβ genes are under the control of distinct promoters. Reporter assays and gel shift assays demonstrated that Sp1 binds to three regions in the TAF-Iα promoter and two or all mutaions of the three Sp1 binding regions reduced the TAF-Iα promoter activity. ChIP assays demonstrated that Sp1 binds to the TAF-Iα promoter in vivo. Furthermore, the expression level of TAF-Iα mRNA was reduced by knockdown of Sp1 using siRNA method. These studies indicated that the TAF-Iα promoter is under the control of Sp1.  相似文献   

17.
18.
The regulation of histone gene expression during the cell cycle   总被引:22,自引:0,他引:22  
  相似文献   

19.
20.
Microglia are reported to have α-amino-hydroxy-5-methyl-isoxazole-4-propionate/kainate (KA) types. However, only small population of primary cultured rat microglia (approximately 20%) responded to KA. In the present study, we have attempted to elucidate the regulatory mechanism of responsiveness to KA in GMIR1 rat microglial cell line. When the GMIR1 cells were plated at a low density in the presence of granulocyte macrophage colony-stimulating factor, the proliferation rate increased and reached the peak after 2 days in culture and then gradually decreased because of density-dependent inhibition. At cell proliferation stage, approximately 80% of the GMIR1 cells exhibited glutamate (Glu)- and KA-induced inward currents at cell proliferation stage, whereas only 22.5% of the cells showed responsiveness to Glu and KA at cell quiescent stage. Furthermore, the mean amplitudes of inward currents induced by Glu and KA at cell proliferation stage (13.8 ± 3.0 and 8.4 ± 0.6 pA) were significantly larger than those obtained at cell quiescent stage (4.7 ± 0.8 and 6.2 ± 1.2 pA). In the GMIR1 cells, KA-induced inward currents were markedly inhibited by (RS)-3-(2-carboxybenzyl) willardiine (UBP296), a selective antagonist for KA receptors. The KA-responsive cells also responded to (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective agonist for GluR5, in both GMIR1 cells and primary cultured rat microglia. Furthermore, mRNA levels of the KA receptor subunits, GluR5 and GluR6, at the cell proliferation stage were significantly higher than those at the cell quiescent stage. Furthermore, the immunoreactivity for GluR6/7 was found to increase in activated microglia in the post-ischemic hippocampus. These results strongly suggest that microglia have functional KA receptors mainly consisting of GluR5 and GluR6, and the expression levels of these subunits are closely regulated by the cell cycle mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号