首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutation in the mitochondrial ATP synthase subunit 6 gene (ATP6 T8993G) was identified in a male infant who died at age 15 months of Leigh syndrome. He had 94% mutated mitochondrial DNA (mtDNA) in muscle and 92% in lymphocytes. His mother was healthy but had 37% mutated mtDNA in muscle and 38% in lymphocytes. The proband's brother, who was also healthy, had 44% mutated mtDNA in lymphocytes. No mutated mtDNA was detected in muscle and lymphocytes from the maternal grandmother of the proband or in lymphocytes from 15 other maternal relatives, showing that the first carrier of the ATP6 T8993G mutation in this family was the mother of the proband. This study shows that this point mutation may occur at substantial levels in a carrier of a de novo mutation and rapid segregation with high levels of mutated mtDNA causing neurodegenerative disease may occur in the second generation.  相似文献   

2.
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.  相似文献   

3.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.  相似文献   

4.
The archetypal NARP syndrome is almost exclusively associated with the m.8993T>C/G mutation in the sixth subunit of the mitochondrial ATP synthase, whereas other mutations in the MT-ATP6 gene primarily associate with Leigh syndrome or Leber's hereditary optic neuropathy (LHON). We report a novel mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p.MT-ATP6.  相似文献   

5.
Prenatal diagnosis of mitochondrial DNA8993 T----G disease.   总被引:11,自引:0,他引:11       下载免费PDF全文
We have previously described a family with a neurological syndrome comprising neurogenic muscle weakness, ataxia, retinitis pigmentosa, and variable sensory neuropathy, seizures, and mental retardation or dementia. This is associated with a heteroplasmic point mutation of mtDNA at bp 8993. The mother of a severely affected child underwent prenatal diagnosis in two further pregnancies. Analysis of chorionic villus samples showed a higher proportion of mutant mtDNA on both occasions, and this was reflected in the majority of fetal tissues, including brain and muscle. Prenatal diagnosis is a rational approach to the prevention of severe diseases caused by point mutations of mtDNA but is currently hampered by incomplete knowledge concerning the proportion of mutant mtDNA: its relationship to disease severity, how it may change during fetal and postnatal development, and its tissue distribution.  相似文献   

6.
NARP (neuropathy, ataxia, and retinitis pigmentosa) and MILS (maternally inherited Leigh syndrome) are mitochondrial disorders associated with point mutations of the mitochondrial DNA (mtDNA) in the gene encoding the Atp6p subunit of the ATP synthase. The most common and studied of these mutations is T8993G converting the highly conserved leucine 156 into arginine. We have introduced this mutation at the corresponding position (183) of yeast Saccharomyces cerevisiae mitochondrially encoded Atp6p. The "yeast NARP mutant" grew very slowly on respiratory substrates, possibly because mitochondrial ATP synthesis was only 10% of the wild type level. The mutated ATP synthase was found to be correctly assembled and present at nearly normal levels (80% of the wild type). Contrary to what has been reported for human NARP cells, the reverse functioning of the ATP synthase, i.e. ATP hydrolysis in the F(1) coupled to F(0)-mediated proton translocation out of the mitochondrial matrix, was significantly compromised in the yeast NARP mutant. Interestingly, the oxygen consumption rate in the yeast NARP mutant was decreased by about 80% compared with the wild type, due to a selective lowering in cytochrome c oxidase (complex IV) content. This finding suggests a possible regulatory mechanism between ATP synthase activity and complex IV expression in yeast mitochondria. The availability of a yeast NARP model could ease the search for rescuing mechanisms against this mitochondrial disease.  相似文献   

7.
A variable combination of developmental delay, retinitis pigmentosa, dementia, seizures, ataxia, proximal neurogenic muscle weakness, and sensory neuropathy occurred in four members of a family and was maternally transmitted. There was no histochemical evidence of mitochondrial myopathy. Blood and muscle from the patients contained two populations of mitochondrial DNA, one of which had a previously unreported restriction site for AvaI. Sequence analysis showed that this was due to a point mutation at nucleotide 8993, resulting in an amino acid change from a highly conserved leucine to arginine in subunit 6 of mitochondrial H(+)-ATPase. There was some correlation between clinical severity and the amount of mutant mitochondrial DNA in the patients; this was present in only small quantities in the blood of healthy elderly relatives in the same maternal line.  相似文献   

8.
The molecular pathogenic mechanism of the human mitochondrial diseases neurogenic ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome was determined in cultured human cells harboring homoplasmic T8993G/T8993C point mutations in the mitochondrial ATP6 gene, which encodes subunit 6 of the F1F0-ATP synthase. Immunoprecipitation and blue native electrophoresis showed that F1F0-ATP synthase assembles correctly in homoplasmic mutant mitochondria. The mutants exhibited a tendency to have an increased sensitivity to subsaturating amounts of oligomycin; this provided further evidence for complete assembly and tight coupling between the F1 and F0 sectors. Furthermore, human ATP synthase dimers and higher homo-oligomers were observed for the first time, and it was demonstrated that the mutant enzymes retain enough structural integrity to oligomerize. A reproducible increase in the proportion of oligomeric-to-monomeric enzyme was found for the T8993G mutant suggesting that F1F0 oligomerization is regulated in vivo and that it can be modified in pathological conditions. Despite correct assembly, the T8993G mutation produced a 60% inhibition in ATP synthesis turnover. In vitro denaturing conditions showed F1F0 instability conferred by the mutations, although this instability did not produce enzyme disassembly in the conditions used for determination of ATP synthesis. Taken together, the data show that the primary molecular pathogenic mechanism of these deleterious human mitochondrial mutations is functional inhibition in a correctly assembled ATP synthase. Structural instability may play a role in the progression of the disease under potentially denaturing conditions, as discussed.  相似文献   

9.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

10.
Rates of ATP synthesis were studied in cultured skin fibroblasts treated with digitonin. In fibroblasts from patients with complex I deficiency, complex IV and complex V deficiency rates of ATP synthesis were decreased below the levels found in controls. In mitochondria isolated from cultured lymphoblasts, ATP synthesis was also decreased by 35–50% in cases of Leigh's disease due to complex I, complex IV, or complex V deficiency. Calculating the effect of the mutations in the various complexes on the overall efficiency of oxidative phosphorylation, we show that the mtDNA 8993 mutation which affects the activity of the F1F0 ATPase (complex V) has the strongest effect.  相似文献   

11.
We have investigated the daughter of a woman with Kearns-Sayre syndrome. The woman had a high percentage of deleted mtDNA in muscle, but no deleted mtDNA was detected in fibroblasts, bone marrow, and peripheral blood cells by Southern blot analysis. With PCR, analytical sensitivity was significantly increased, and deleted mtDNA was detected in all examined tissues from this patient. The patient had healthy parents and nine healthy siblings. No deleted mtDNA was detected in blood from the mother of the patient. The patient had an uneventful pregnancy and delivered at term. Deleted mtDNA could not be detected in placenta by Southern blot analysis. With PCR, deleted mtDNA was detected in the majority of placental specimens. This finding may, however, be due to contamination with maternal DNA. The patient's daughter was healthy at age 5 mo, and morphologic examination of muscle was normal. No transmission of deleted mtDNA to the daughter could be detected by Southern blot and PCR analysis of peripheral blood cells, bone marrow, fibroblasts, and muscle. The presence of deleted mtDNA was excluded at a fractional level of less than 1:100,000 in all examined tissues from the daughter.  相似文献   

12.
A T --> G mutation at position 8993 in human mitochondrial DNA is associated with the syndrome neuropathy, ataxia, and retinitis pigmentosa and with a maternally inherited form of Leigh's syndrome. The mutation substitutes an arginine for a leucine at amino acid position 156 in ATPase 6, a component of the F0 portion of the mitochondrial ATP synthase complex. Fibroblasts harboring high levels of the T8993G mutation have decreased ATP synthesis activity, but do not display any growth defect under standard culture conditions. Combining the notions that cells with respiratory chain defects grow poorly in medium containing galactose as the major carbon source, and that resistance to oligomycin, a mitochondrial inhibitor, is associated with mutations in the ATPase 6 gene in the same transmembrane domain where the T8993G amino acid substitution is located, we created selective culture conditions using galactose and oligomycin that elicited a pathological phenotype in T8993G cells and that allowed for the rapid selection of wild-type over T8993G mutant cells. We then generated cytoplasmic hybrid clones containing heteroplasmic levels of the T8993G mutation, and showed that selection in galactose-oligomycin caused a significant increase in the fraction of wild-type molecules (from 16 to 28%) in these cells.  相似文献   

13.
We investigated the biochemical phenotype of the mtDNA T8993G point mutation in the ATPase 6 gene, associated with neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in three patients from two unrelated families. All three carried >80% mutant genome in platelets and were manifesting clinically various degrees of the NARP phenotype. Coupled submitochondrial particles prepared from platelets capable of succinate-sustained ATP synthesis were studied using very sensitive and rapid luminometric and fluorescence methods. A sharp decrease (>95%) in the succinate-sustained ATP synthesis rate of the particles was found, but both the ATP hydrolysis rate and ATP-driven proton translocation (when the protons flow from the matrix to the cytosol) were minimally affected. The T8993G mutation changes the highly conserved residue Leu(156) to Arg in the ATPase 6 subunit (subunit a). This subunit, together with subunit c, is thought to cooperatively catalyze proton translocation and rotate, one with respect to the other, during the catalytic cycle of the F(1)F(0) complex. Our results suggest that the T8993G mutation induces a structural defect in human F(1)F(0)-ATPase that causes a severe impairment of ATP synthesis. This is possibly due to a defect in either the vectorial proton transport from the cytosol to the mitochondrial matrix or the coupling of proton flow through F(0) to ATP synthesis in F(1). Whatever mechanism is involved, this leads to impaired ATP synthesis. On the other hand, ATP hydrolysis that involves proton flow from the matrix to the cytosol is essentially unaffected.  相似文献   

14.
Mitochondrial diseases originate from mutations in mitochondrial or nuclear genes encoding for mitochondrial proteome. Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) syndrome is associated with the T8993G transversion in ATP6 gene which results in substitution at the very conservative site in the subunit 6 of mitochondrial ATP synthase. Defects in the mitochondrial respiratory chain and the ATPase are considered to be accompanied by changes in the generation of reactive oxygen species (ROS). This study aimed to elucidate effects of selenium on ROS and antioxidant system of NARP cybrid cells with 98% of T8993G mutation load. We found that selenium decreased ROS generation and increased the level and activity of antioxidant enzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Therefore, we propose selenium to be a promising therapeutic agent not only in the case of NARP syndrome but also other diseases associated with mitochondrial dysfunctions and oxidative stress.  相似文献   

15.
Leigh syndrome (LS) is an incurable, nearly always fatal, neurodegenerative, pediatric disorder that results from respiratory chain failure. The most common mitochondrial DNA (mtDNA) mutations that result in LS are m.8993T→C/G and m.9176T→C/G, which were previously found in several patients with early-onset Leigh syndrome. Here, we describe clinical and molecular features of a novel pedigree, where LS developed in two siblings. The proband was a young woman with an unusual adult-onset LS. She harbored a homoplasmic m.9176T→C mutation, based on analysis of a muscle biopsy. In contrast, the brother died at a young age. This novel case report and literature review highlights the variability of phenotypic expression of the m.9176T→C mutation.  相似文献   

16.
Two sisters in the first year of life presented with a proximal tubulopathy of unknown etiology. They subsequently developed a pluritissular disorder including diabetes mellitus, skin abnormalities, mitochondrial myopathy with ragged-red fibers, and cerebellar ataxia. Their mother had ptosis, ophthalmoplegia, and muscle weakness. Analysis of the mitochondrial respiratory chain showed a complex III deficiency in both skeletal muscle and lymphocytes of the second girl. Southern blot analysis provided evidence for a heteroplasmic partial duplication of the mtDNA (26 kb), involving one full-length and one partly deleted mitochondrial genome and with one single abnormal junction between the genes for ATPase 6 and cytochrome b. Using PCR amplification of lymphocyte DNA, we were able to detect minute amounts of duplicated molecules in the mother, which provided evidence for maternal inheritance of the partial duplication. While maternal transmission of point mutations have been reported in Leber disease, retinitis pigmentosa, and MERRF disease, this observation is, to our knowledge, the first example of a maternally inherited duplication of the mitochondrial genome in man.  相似文献   

17.
The restriction endonucleaseSmaI has been used for the diagnosis of neurogenic muscle weakness, ataxia and retinitis pigmentosa disease or Leigh's disease, caused by the Mt8993TG mutation which results in a Leu156Arg replacement that blocks proton translocation activity of subunit a of F0F1-ATPase. Our ultimate goal is to applySmaI to gene therapy for this disease, because the mutant mitochondrial DNA (mtDNA) coexists with the wild-type mtDNA (heteroplasmy), and because only the mutant mtDNA, but not the wild-type mtDNA, is selectively restricted by the enzyme. For this purpose, we transiently expressed theSmaI gene fused to a mitochondrial targeting sequence in cybrids carrying the mutant mtDNA. Here, we demonstrate that mitochondria targeted by theSmaI enzyme showed specific elimination of the mutant mtDNA. This elimination was followed with repopulation by the wild-type mtDNA, resulting in restoration of both the normal intracellular ATP level and normal mitochondrial membrane potential. Furthermore, in vivo electroporation of the plasmids expressing mitochondrion-targetedEcoRI induced a decrease in cytochromec oxidase activity in hamster skeletal muscles while causing no degenerative changes in nuclei. Delivery of restriction enzymes into mitochondria is a novel strategy for gene therapy of a special form of mitochondrial diseases.  相似文献   

18.
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.  相似文献   

19.
We have studied cultured skin fibroblasts from a patient with a fatal mitochondrial disease manifesting soon after birth. These fibroblasts were found to grow only in the presence of pyruvate and uridine, a characteristic of cells lacking mtDNA (rho0 cells). Southern blot and PCR analyses confirmed that the patient's fibroblasts contained less than 2% of control levels of mtDNA. Biochemical analyses indicated that the activities of all the respiratory-chain enzymes were severely decreased in mitochondria isolated from these fibroblasts. In order to elucidate the underlying molecular defect, cell fusions were performed between enucleated fibroblasts from this patient and a human-derived rho0 cell line (rho0 A549.B2). The resulting cybrids were plated in medium lacking pyruvate and uridine, to select for the restoration of respiratory-chain function. Complementation was observed between the nuclear genome of the rho0 A549.B2 cells and the mtDNA of the patient's cells, restoring mtDNA levels and respiratory-chain function in the cybrid cells. These results indicate that mtDNA depletion in our patient is under the control of the nuclear genome.  相似文献   

20.
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号