首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sexual differentiation of rat liver carbonic anhydrase III   总被引:5,自引:0,他引:5  
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

2.
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

3.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

4.
The influence of thyroid hormones on lipid biosynthesis was studied after administration of L-thyroxine to rats for 5 days. Their weights remained the same as those of control animals, despite an approximately 3-fold increment in plasma L-thyroxine and L-triiodothyronine concentrations. The activity of acetyl-CoA carboxylase and fatty acid synthetase as well as incorporation of tritium into fatty acids were depressed significantly in epididymal adipose tissue and enhanced significantly in livers of thyroxine-treated rats. Using antibodies specific against rat liver fatty acid synthetase, it was determined that the changes in activity of this multienzymic complex were due to alterations in amount of enzyme protein. In the presence of optimal concentrations of fatty acids, radioactive sn-glycero-3-phosphate, and co-substrates, total glycerolipid synthesis (defined in this study as the sum of newly formed radioactive mono- and diacyl-sn-glycero-3-phosphate, diglyceride, and triglyceride) was decreased significantly in adipose tissue and increased in liver and heart. Thus, administration of thyroid hormone results in tissue-specific alterations in lipid biosynthesis which, at least in the case of fatty acid synthetase, are due to changes in enzyme protein content.  相似文献   

5.
Abstract— The activity of fatty acid synthetase was studied in the brain and liver of the developing rat. Synthetase activity in brain was considerably higher in foetal and suckling rats than in older animals However, except for a small transient rise in the perinatal period, activity in liver was low until weaning when a dramatic rise occurred. Activity in brain varied according to the quantity of dietary fat only in long-term experiments, whereas in liver nutritional influences clearly predominated in determining the rapid developmental changes of synthetase activity. Administration of hydrocortisone diminished hepatic activity but did not change brain synthetase. In the hypothyroid state activity in brain and liver was consistently decreased. However, in the hyperthyroid state hepatic activity increased but activity in brain did not change. The relatively high activity of fatty acid synthetase during brain development has been discussed in relation to the critical role of this enzyme system in brain metabolism. The effect of the hypothyroid state on the activity of brain synthetase suggests the possibility of hormonal control of this enzyme activity. The responses of hepatic synthetase to the hormonal influences delineate a specific step by which these compounds may exert their effect on fatty acid biosynthesis.  相似文献   

6.
We measured acetyl-CoA carboxylase mRNA levels in various tissues of the rat under different nutritional and hormonal states using a cDNA probe. We surveyed physiological conditions which are known to alter carboxylase activity, and thus fatty acid synthesis, to determine whether changes in the levels of carboxylase mRNA are involved. The present studies include the effects of fasting and refeeding, diabetes and insulin, and lactation on carboxylase mRNA levels. Northern blot analysis of liver RNA revealed that fasting followed by refeeding animals a fat-free (high carbohydrate) diet dramatically increased the amount of carboxylase mRNA compared to the fasted condition. These changes in the level of mRNA correspond to changes in the activity and amount of acetyl-CoA carboxylase. Acetyl-CoA carboxylase mRNA levels in epididymal fat tissue decreased upon fasting and increased to virtually normal levels after 72 h of refeeding, closely resembling the liver response. The amount of acetyl-CoA carboxylase mRNA decreased markedly in epididymal fat tissue of diabetic rats as compared to nondiabetic animals. However, 6 h after injection of insulin the mRNA level returned to that of the nondiabetic animals. Gestation and lactation also affected the levels of carboxylase mRNA in both liver and mammary gland. Maximum induction in both tissues occurred 5 days postpartum. These studies suggest that these diverse physiological conditions affect fatty acid synthesis in part by altering acetyl-CoA carboxylase gene expression.  相似文献   

7.
The induction and characterization of rat liver stearyl-CoA desaturase mRNA   总被引:11,自引:0,他引:11  
Poly(A+) RNA isolated from livers of rats induced for stearyl-CoA desaturase contains elevated levels of mRNA for this enzyme which is translated in a rabbit reticulocyte system. The protein is immunologically and by peptide fingerprinting following Staphylococcus aureus V8 protease digestion identical to the isolated enzyme and, therefore, not synthesized in a detectable larger precursor form. The desaturase mRNA is selectively translated on free cytoplasmic polysomes from rat liver and represents at least a 40-fold increase in translatable mRNA in livers of induced animals. Northern blot analysis, using a cDNA probe complementary to rat liver desaturase mRNA, demonstrated that the desaturase is encoded by a 4900-base mRNA which is elevated approximately 50-fold in induced liver.  相似文献   

8.
Poly(A)+ RNA from lactating rat mammary glands was fractionated according to size by isokinetic sucrose gradient centrifugation to obtain a fraction enriched for acetyl-CoA carboxylase. In vitro translation of this RNA preparation yielded apparent full-length acetyl-CoA carboxylase with a molecular weight of 260,000. The synthesized protein was identified as acetyl-CoA carboxylase by specific immunoprecipitation. Tests with antiserum to fatty acid synthetase, revealed that the fractions containing acetyl-CoA carboxylase mRNA also contained mRNA for fatty acid synthetase; both of these mRNAs were approximately 10 kb. Fatty acid synthetase with a molecular weight of 250,000 was synthesized. Using an in vitro rabbit reticulocyte lysate translation system, we have shown that the amount of translatable acetyl-CoA carboxylase mRNA increases during lactation. On the fifth day postpartum the level of translatable acetyl-CoA carboxylase mRNA increased to a peak level seven times that on the day of parturition.  相似文献   

9.
We have investigated developmental profiles of ATP-dependent palmityl-CoA synthetase, acetyl-CoA synthetase, palmitylcarnitine transferase, and fatty acid oxidation in heart and liver of developing chicks and rats. Palmityl-CoA synthetase activity of rat liver and heart homogenates increased 6- to 10-fold during the first postnatal week. Chick embryo heart activity peaked between 13 and 16 days of development. The activity of embryonic chick livers was bimodal with highest activity seen at 7 and 16 days of development. Posthatching values were approximately 50–75% of the peak embryonic levels. Acetyl-CoA synthetase activity of rat liver and heart homogenates was low but also showed developmental increases following birth. Acetyl-CoA synthetase activity of chick embryonic hearts was greatest at 16 days of development. Palmitylcarnitine transferase activity of rat liver and heart homogenates showed a striking increase during the first week of life. Chick heart activity was similar to that observed for palmityl-CoA synthetase with a peak between 13 and 16 days of embryonic development. Coincident with the postnatal rise in fatty acid activation and palmitylcarnitine transferase activity in developing rats, the oxidation of palmityl-CoA plus carnitine and of palmitylcarnitine increased from barely measurable levels at birth to adult levels by 30 days of age. The increases that we observe probably relate to changes in the specific activity of the enzymes as well as to an increase in the absolute number of mitochondria during development.  相似文献   

10.
11.
The effects of experimental inflammation, induced by subcutaneous injection of oil of turpentine, on adaptive synthesis of rat liver fatty acid synthetase were investigated. Liver levels of α1-acid glycoprotein, an “acute-phase” protein known to be synthesized at an accelerated rate as a result of inflammation, were also measured. The increase in fatty acid synthetase activity in livers of rats which were starved and then fed a fat-free diet was suppressed to an extent dependent on the periods between fat-free feeding and inflammation and inflammation and sacrifice. Inflammation induced 2 h after refeeding gave complete suppression, whereas inflammation after 10 h of fat-free feeding had no suppressive effect. When induced 2.5 or 7.5 h after refeeding, inflammation led to partial suppression of the increase in fatty acid synthetase activity. The increase in liver α1,-acid glycoprotein levels characteristic of inflammation was reduced in animals inflamed 7.5 or 10 h after fat-free feeding, but was unaffected when inflammation was induced 2.5 h after refeeding. The ratio of free to membrane-bound polyribosomes in liver increased from 0.77 in rats which were neither starved nor fed a fat-free diet to 3.31 in rats which were starved and then fed a fat-free diet for 15 h. When inflammation was induced 2.5 h after refeeding, the ratio increased to only 1.74 after 15 h of refeeding. Inflammation resulted in a marked reduction in the level of glycogen in the liver, regardless of the time of induction of inflammation and the dietary status of the animal.  相似文献   

12.
Livers from normal, fed male and female rats were perfused with different amounts of [1-14C]oleate under steady state conditions, and the rates of uptake and utilization of free fatty acid (FFA) were measured. The uptake of FFA by livers from either male or female rats was proportional to the concentration of FFA in the medium. The rate of uptake of FFA, per g of liver, by livers from female rats exceeded that of the males for the same amount of FFA infused. The incorporation by the liver of exogenous oleic acid into triglyceride, phospholipid, and oxidation products was proportional to the uptake of FFA. Livers from female rats incorporated more oleate into triglyceride (TG) and less into phospholipid (PL) and oxidation products than did livers from male animals. Livers from female rats secreted more TG than did livers from male animals when infused with equal quantities of oleate. The incorporation of endogenous fatty acid into TG of the perfusate was inhibite) by exogenous oleate. At low concentrations of perfusate FFA, however, endogenous fatty acids contributed substantially to the increased output of TG by livers from female animals. Production of 14CO2 and radioactive ketone bodies increased with increasing uptake of FFA. The partition of oleate between oxidative pathways (CO2 production and ketogenesis) was modified by the availability of the fatty acid substrate with livers from either sex. The percent incorporation of radioactivity into CO2 reached a maximum, whereas incorporation into ketone bodies continued to increase. The output of ketone bodies was dependent on the uptake of FFA, and output by livers from female animals was less than by livers from male rats. The increase in rate of ketogenesis was dependent on the influx of exogenous FFA, while ketogenesis from endogenous sources remained relatively stable. The output of glucose by the liver increased with the uptake of FFA, but no difference due to sex was observed. The output of urea by livers from male rats was unaffected by oleate, while the output of urea by livers from females decreased as the uptake of FFA increased. A major conclusion to be derived from this work is that oleate is not metabolized identically by livers from the two sexes, but rather, per gram of liver, livers from female rats take up and esterify more fatty acid to TG and oxidize less than do livers from male animals; livers from female animals synthesize and secrete more triglyceride than do livers from male animals when provided with equal quantities of free fatty acid.  相似文献   

13.
Dietary n?3 polyunsaturated fatty acids (PUFA) are major components of cell membranes and have beneficial effects on human health. Docosahexaenoic acid (DHA; 22:6n?3) is the most biologically important n?3 PUFA and can be synthesized from its dietary essential precursor, α-linolenic acid (ALA; 18:3n?3). Gender differences in the efficiency of DHA bioconversion have been reported, but underlying molecular mechanisms are unknown. We compared the capacity for DHA synthesis from ALA and the expression of related enzymes in the liver and cerebral cortex between male and female rats. Wistar rats, born with a low-DHA status, were supplied with a suboptimal amount of ALA from weaning to 8 weeks of age. Fatty acid composition was determined by gas chromatography, the mRNA expression of different genes involved in PUFA metabolism was determined by RT-PCR (low-density array) and the expression of proteins was determined by Western blot analysis. At 8 weeks, DHA content was higher (+20 to +40%) in each phospholipid class of female livers compared to male livers. The “Δ4,” Δ5 and Δ6 desaturation indexes were 1.2–3 times higher in females than in males. The mRNA expression of Δ5- and Δ6-desaturase genes was 3.8 and 2.5 times greater, respectively, and the Δ5-desaturase protein was higher in female livers (+50%). No gender difference was observed in the cerebral cortex. We conclude that female rats replete their DHA status more readily than males, probably due to a higher expression of liver desaturases. Our results support the hypothesis on hormonal regulation of PUFA metabolism, which should be taken into account for specific nutritional recommendations.  相似文献   

14.
Young rats (100 g) were fed either a purified myo-inositol-deficient balanced diet or a control diet containing 0.5% by weight myo-inositol, ad libitum, for up to 2 weeks following a 48 h fast. Weight gain was the same for animals in both groups. Liver triacylglycerol levels in the deficient animals were 1.8-, 3.5- and 3.0-fold higher than the corresponding levels in the control animals after 4, 8 and 14 days of feeding, respectively. In the myo-inositol-deficient group the specific activities of liver fatty acid synthetase and acetyl-CoA carboxylase were elevated 1.5-2.0-fold over controls, reaching a maximum after 3-4 days of feeding. Subsequently, activities declined to control levels. Rates of fatty acid synthetase synthesis in the deficient group, as measured by [3H]leucine incorporation into immunoprecipitable fatty acid synthetase polypeptide, were significantly higher (1.5-2.0-fold) than controls after 12-18 h of feeding and then declined to control levels by 1 day. No difference was noted between groups in either the rate of total, soluble liver protein synthesis or the half-life of fatty acid synthetase over this time period. These results suggest that the liver lipodystrophy observed during myo-inositol deficiency in rats may be due in part to elevated levels of lipogenic enzymes in this tissue in the early stage of the deficiency.  相似文献   

15.
The adaptive synthesis of fatty acid synthetase in the livers of rats fed a fat-free diet following 48 hr of fasting has been studied using immunochemical methods. The development of fatty acid synthetase activity during adaptive synthesis occurs about 3 hr following feeding, whereas the synthesis of material precipitable by anti-fatty acid synthetase serum, as judged by the incorporation of 3H-labeled amino acids into the immunoprecipitate, commenced within 1 hr. Extracts of liver of rats fed a fat-free diet for 1–3 hr following fasting contain increasing amounts of material which competes with purified fatty acid synthetase for antibody binding sites, even though they have no fatty acid synthetase activity. This suggests the presence of enzymatically inactive precursors of fatty acid synthetase in the liver extracts. The incorporation of [14C]pantothenate into fatty acid synthetase during adaptive synthesis follows the same pattern as the development of enzyme activity, indicating that these enzymatically inactive precursors of fatty acid synthetase may represent an apoenzyme which is converted to the enzymatically active holoenzyme by the incorporation of the 4′-phosphopantetheine prosthetic group. The subcellular site of synthesis of fatty acid synthetase was shown to be in the pool of polysomes that are not membrane bound, rather than in the rough endoplasmic reticulum.  相似文献   

16.
The effects of oleic acid on the activities of cytosolic HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase, AcAc-CoA (acetoacetyl-CoA) thiolase and AcAc-CoA synthetase, as well as microsomal HMG-CoA reductase, all enzymes in the pathway of cholesterol biosynthesis, were studied in the isolated perfused rat liver. Oleic acid bound to bovine serum albumin, or albumin alone, was infused for 4 h at a rate sufficient to sustain an average concentration of 0.61 +/- 0.05 mM fatty acid during the perfusion. Hepatic cytosol and microsomal fractions were isolated at the termination of the perfusion. Oleic acid simultaneously increased the activities of the cytosolic cholesterol-biosynthetic enzymes 1.4-2.7-fold in livers from normal fed rats and from animals fasted for 24 h. These effects were accompanied by increased net secretion by the liver of cholesterol and triacylglycerol in the very-low-density lipoprotein (VLDL). We confirmed the observations reported previously from this laboratory of the stimulation by oleic acid of microsomal HMG-CoA reductase. In cytosols from perfused livers, the increase in AcAc-CoA thiolase activity was characterized by an increase in Vmax. without any change in the apparent Km of the enzyme for AcAc-CoA. In contrast, oleic acid decreased the Km of HMG-CoA synthase for Ac-CoA, without alteration of the Vmax. of the enzyme. The Vmax. of AcAc-CoA synthetase was increased by oleic acid, and there was a trend towards a small increase in the Km of the enzyme for acetoacetate. These data allow us to conclude that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are stimulated, as is HMG-CoA reductase, by a physiological substrate, fatty acid, that increases rates of hepatic cholesterol synthesis and cholesterol secretion. Furthermore, we suggest that these effects of fatty acid on hepatic cholesterol metabolism result from stimulation of secretion of triacylglycerol in the VLDL by fatty acids, and the absolute requirement of cholesterol as an important structural surface component of the VLDL necessary for transport of triacylglycerol from the liver.  相似文献   

17.
Hormonal regulation of the hepatic messenger RNA levels for alpha2u globulin.   总被引:14,自引:0,他引:14  
The messenger RNA rat alpha2u globulin has been identified and quantitated in a cell-free translational system derived from Krebs II ascites cells. Hepatic tissue of the mature male rats which normally produce alpha2u globulin was also found to contain a high level of alpha2u mRNA. Approximately 1.6 per cent of all poly(A) containing RNA of the adult male rat liver could be accounted for alpha2u messenger activity. Female rats do not produce alpha2u globulin and no alpha2u mRNA activity could be detected in the poly(A) containing RNA fraction obtained from the livers of these animals. However, androgen treatment to spayed female rats was found to induce the parallel appearance to both alpha2u globulin and its corresponding mRNA. Both hypophysectomy and adrenalectomy which are known to reduce the level of alpha2u globulin in the urine of male rats were found also to reduce the hepatic level of alpha2u mRNA. The results indicate that hormonal control of alpha2u globulin synthesis in rat liver is achieved primarily through regulation of its translatable mRNA level and that more than one hormone may participate in this regulation.  相似文献   

18.
19.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

20.
A cDNA clone complementary to mRNA encoding the precursor (Mr = 165,000) to the rat liver mitochondrial matrix enzyme carbamyl phosphate synthetase I (Mr = 160,000) was employed to compare relative amounts of the messenger in adult and fetal liver and in Morris hepatoma 5123D and 3924A cells. Northern blot analysis gave a size estimate for the messenger of 6,500-6,700 nucleotides. Carbamyl phosphate synthetase mRNA levels in 15-day-old fetal liver were less than 10% of adult levels; 5123D cells expressed the messenger at levels about 2-fold higher than normal adult liver, but the messenger was undetectable in 3924A cells. Albumin mRNA was also expressed in the former but not in the latter. Maintaining rats for 5 days on a diet containing 60% casein augmented the relative amount of carbamyl phosphate synthetase mRNA by about 2-fold, while a protein-free diet resulted in reduced levels of the mRNA (about 50% compared to animals on a normal diet). Finally, the pattern of hybridization of carbamyl phosphate synthetase cDNA to HindIII-digested genomic DNA showed no differences between normal liver and its corresponding hepatoma; however, a HindIII site polymorphism was observed between Buffalo and ACI rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号