首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

3.
The complete mitochondrial genome (mitogenome) of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) was determined. The circular genome is 15,345 bp long, and presents a typical gene organization and order for sequenced mitogenomes of Bombycidea species. The nucleotide composition of the genome is highly A+T biased, accounting for 79.86%. The AT skew of the genome is slightly negative, indicating the occurrence of more Ts than As, as found in other Saturniidae species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI and COII, which are tentatively designated by CGA and GTG, respectively, as observed in other insects. Four of 13 PCGs, including COI, COII, ATP6, and ND3, harbor the incomplete termination codons, T or TA. With an exception for tRNASer(AGN), all other tRNAs can form a typical clover-leaf structure of mitochondrial tRNA. The 359 bp A+T-rich region of S. c. cynthia contains non-repetitive sequences, but harbors several features common to the Bombycidea insects, including the motif ATAGA followed by a poly-T stretch of 19 bp, a microsatellite-like (AT)7 element preceded by the ATTTA motif, and a poly-A element upstream tRNAMet. The phylogenetic analyses support the morphology-based current hypothesis that Bombycidae and Saturniidae are monophyletic. Our result confirms that Saturniini and Attacini form a reciprocal monophyletic group within Saturniidae.  相似文献   

4.
Longidorid nematodes comprise more than 500 species, and Longidorus and Xiphinema are the most diversified, prevalent, and cosmopolitan genera within plant-parasitic nematodes. This increases the risk of species misidentification. We conducted an integrative morphometric and genetic study on two longidorid species to elucidate the existence of new cases of cryptic speciation within the genera Longidorus and Xiphinema. Detailed morphological, morphometrical, multivariate, and genetic studies were carried out, and mitochondrial and nuclear haploweb analyses were used to differentiate species within the L. iliturgiensis and X. hispanum complexes. Species delimitation using multivariate and haplonet tools of L. iliturgiensis species complex clearly separated L. tabernensis sp. nov. from L. iliturgiensis and L. indalus, and X. subbaetense sp. nov. from X. hispanum and X. adenohystherum. D2-D3, partial 18S, and partial coxI regions were used for inferring their phylogenetic relationships with other species in each genus. The present study provides new insights into the diversity of Longidorus and Xiphinema species detected in southern Spain, and new evidence of cryptic speciation in both genera. These results support our hypothesis that the biodiversity of Longidoridae in southern Europe is higher than previously supposed and is still not fully clarified.  相似文献   

5.
This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.  相似文献   

6.
D A Thorley-Lawson 《Cell》1979,16(1):33-42
A rabbit antiserum has been prepared against the B95-8 transforming strain of EBV. The antiserum has a high virus neutralizing titer (approximately 1:1000) against both the marmoset B95-8 EBV and the human P3HR-1 EBV. The neutralizing antibodies may be absorbed completely with EBV producer cell lines, but not with nonproducer cell lines or producer cell lines treated with phosphonoacetic acid (PAA) so as to be nonproducer. After repeated absorption with PAA-treated B95-8, the serum remains reactive with the membranes of producer cell lines as judged by immunofluorescence or the 125I--Staphylococcal protein A radioimmunoassay. Thus the neutralizing antigens are expressed on the membranes of producer cell lines and may be purified from this source using the serum and 125I--Staph A binding as an assay. The ability of the serum to differentiate between producer and nonproducer cells by means of cell surface determinants has been exploited to achieve a separation of these two populations from the same culture. Immunoprecipitation by the protein A technique shows that the serum recognizes two polypeptides from producer cells of approximate molecular weights 150,000 and 75,000.  相似文献   

7.
8.
The lobate lac scale Paratachardina pseudolobata Kondo & Gullan (Kerriidae) is a polyphagous pest of woody plants in Florida (U.S.A.) the Bahamas, Christmas Island (Australia) and it has been reported from Cuba. Its recent appearance as a pest in these places indicates that this scale is introduced; however, its native range is unknown. Until 2006, this pest species was identified mistakenly as Paratachardina lobata (Chamberlin) [now P. silvestri (Mahdihassan)], which is native to India and Sri Lanka. Quarantine laboratory acceptance trials with Indian P. silvestri parasitoids indicated a strong immune response from P. pseudolobata. Gregarious development of encyrtid wasps was the only observed parasitism, but parasitization levels were below 3%. Identification of the native range of P. pseudolobata would facilitate the search for natural enemies better adapted to the scale. Sequence data from the D2–D3 region of the nuclear large subunit ribosomal RNA gene (LSU rRNA, 28S) and the mitochondrial gene cytochrome oxidase I (COI) distinguished P. pseudolobata from the morphologically similar species P. silvestri and P. mahdihassani Kondo & Gullan, and showed P. pseudolobata to be more closely related to these Indotropical species than to an Australian species of Paratachardina Balachowsky. Paratachardina pseudolobata was genetically uniform throughout its exotic range, consistent with a single geographic origin, although lack of variation in these genes is not unusual for scale insects. Molecular identification of morphologically similar Paratachardina species was possible using the D2–D3 region of 28S, despite its length variation, suggesting that this gene region might be suitable as a non-COI barcoding gene for scale insects.  相似文献   

9.
Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.  相似文献   

10.
Amphistomiasis, a neglected trematode infectious disease of ruminants, is caused by numerous species of amphistomes belonging to six families under the Superfamily Paramphistomoidea. In the present study, four frequently used DNA markers, viz. nuclear ribosomal 28S (D1–D3 regions), 18S and ITS2 and mitochondrial COI genes, as well as sequence motifs from these genes were evaluated for their utility in species characterization of members of the amphistomes' Family Gastrothylacidae commonly prevailing in Northeast India. In sequence and phylogenetic analyses the COI gene turned out to be the most useful marker in identifying the gastrothylacid species, with the exception of Gastrothylax crumenifer, which showed a high degree of intraspecific variations among its isolates. The sequence analysis data also showed the ITS2 region to be effective for interspecies characterization, though the 28S and 18S genes were found unsuitable for the purpose. On the other hand, sequence motif analysis data revealed the motifs from the COI gene to be highly conserved and specific for their target species which allowed accurate in silico identification of the gastrothylacid species irrespective of their intraspecific differences. We propose the use of COI motifs generated in the study as a potential tool for identification of these species.  相似文献   

11.
Reconstituted nicotinic acetylcholine receptors (nAChRs) exhibit significant gain-of-function upon addition of cholesterol to reconstitution mixtures, and cholesterol affects the organization of nAChRs within domain-forming membranes, but whether nAChR partitions to cholesterol-rich liquid-ordered (“raft” or lo) domains or cholesterol-poor liquid-disordered (ldo) domains is unknown. We use coarse-grained molecular dynamics simulations to observe spontaneous interactions of cholesterol, saturated lipids, and polyunsaturated (PUFA) lipids with nAChRs. In binary Dipalmitoylphosphatidylcholine:Cholesterol (DPPC:CHOL) mixtures, both CHOL and DPPC acyl chains were observed spontaneously entering deep “non-annular” cavities in the nAChR TMD, particularly at the subunit interface and the β subunit center, facilitated by the low amino acid density in the cryo-EM structure of nAChR in a native membrane. Cholesterol was highly enriched in the annulus around the TMD, but this effect extended over (at most) 5–10 Å. In domain-forming ternary mixtures containing PUFAs, the presence of a single receptor did not significantly affect the likelihood of domain formation. nAChR partitioned to any cholesterol-poor ldo domain that was present, regardless of whether the ldo or lo domain lipids had PC or PE headgroups. Enrichment of PUFAs among boundary lipids was positively correlated with their propensity for demixing from cholesterol-rich phases. Long n-3 chains (tested here with Docosahexaenoic Acid, DHA) were highly enriched in annular and non-annular embedded sites, partially displacing cholesterol and completely displacing DPPC, and occupying sites even deeper within the bundle. Shorter n-6 chains were far less effective at displacing cholesterol from non-annular sites.  相似文献   

12.
13.
Rem2 is a member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins. In mammals, Rem2 has been found to be unique in not only its structure, but also its tissue specificity, as it is the first member to be found at high levels in neuronal tissue. Because Rem2 has previously been implicated in neuronal cell proliferation, and amphibians maintain relatively high neuronal proliferative activity as adults, we sought to isolate and acquire the full-length sequence of the rem2 gene from the brain of the bullfrog (Rana catesbeiana). Furthermore, we used real time PCR (rtPCR) to characterize its tissue specificity, regional brain expression, and brain expression levels at different stages of development. Deduced amino acid sequence analysis showed that the bullfrog Rem2 protein possesses the unique 5′ extension characteristic of mammalian Rem2 and the RGK subfamily to which it belongs. Tissue specificity of the bullfrog rem2 gene showed that the bullfrog is similar to both mammals and fish in that the levels of rem2 gene expression were significantly greater in the brain than all other tissues assayed. In the brain itself, differential rem2 expression patterns were observed between six major brain areas assayed and the spinal cord, with expression significantly high in the cerebrum and low in the cerebellum. Finally, examination of whole brain rem2 expression levels in bullfrogs at different stages of development revealed greater expression after metamorphic climax.  相似文献   

14.
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.  相似文献   

15.
Escherichia coli pseudouridine synthase RluF is dedicated to modifying U2604 in a stem-loop of 23S RNA, while a homologue, RluB, modifies the adjacent base, U2605. Both uridines are in the same RNA stem, separated by ∼ 4 Å. The 3.0 Å X-ray crystal structure of RluF bound to the isolated stem-loop, in which U2604 is substituted by 5-fluorouridine to prevent catalytic turnover, shows RluF distinguishes closely spaced bases in similar environments by a selectivity mechanism based on a frameshift in base pairing. The RNA stem-loop is bound to a conserved binding groove in the catalytic domain. A base from a bulge in the stem, A2602, has folded into the stem, forcing one strand of the RNA stem to translate by one position and thus positioning U2604 to flip into the active site. RluF does not modify U2604 in mutant stem-loops that lack the A2602 bulge and shows dramatically higher activity for a stem-loop with a mutation designed to facilitate A2602 refolding into the stem with concomitant RNA strand translation. Residues whose side chains contact rearranged bases in the bound stem-loop, while conserved among RluFs, are not conserved between RluFs and RluBs, suggesting that RluB does not bind to the rearranged stem loop.  相似文献   

16.
Through the comprehensive analysis of the genomic DNA sequence of human chromosome 22, we identified a novel gene of 702 kb encoding a big protein of 2481 amino acid residues, and named it as TPRBK (TPR containing big gene cloned at Keio). A novel protein TPRBK possesses 25 units of the TPR motif, which has been known to associate with a diverse range of biological functions. Orthologous genes of human TPRBK were found widely in animal species, from insecta to mammal, but not found in plants, fungi and nematoda. Northern blotting and RT-PCR analyses revealed that TPRBK gene is expressed ubiquitously in the human and mouse fetal tissues and various cell lines of human, monkey and mouse. Immunofluorescent staining of the synchronized monkey COS-7 cells with several relevant antibodies indicated that TPRBK changes its subcellular localization during the cell cycle: at interphase TPRBK locates on the centrosomes, during mitosis it translocates from spindle poles to mitotic spindles then to spindle midzone, and through a period of cytokinesis it stays on the midbody. Co-immunoprecipitation assay and immunofluorescent staining with adequate antibodies revealed that TPRBK binds to Aurora B, and those proteins together translocate throughout mitosis and cytokinesis. Treatments of cells with two drugs (Blebbistatin and Y-27632), that are known to inhibit the contractility of actin–myosin, disturbed the proper intracellular localization of TPRBK. Moreover, the knockdown of TPRBK expression by small interfering RNA (siRNA) suppressed the bundling of spindle midzone microtubules and disrupted the midbody formation, arresting the cells at G2 + M phase. These observations indicated that a novel big protein TPRBK is essential for the formation and integrity of the midbody, hence we postulated that TPRBK plays a critical role in the progress of mitosis and cytokinesis during mammalian cell cycle.  相似文献   

17.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

18.
The gastrointestinal tract (GIT) of mammals is the main portal of entry for foreign DNA and proteins. We have documented the fate of orally administered DNA or protein in the GIT of the mouse. The gene for the Green Fluorescent Protein (GFP) (4.7 kb) and the genomes of bacteriophage M13 (7.25 kb) and adenovirus type 2 (Ad2; 35.9 kb) were used as test DNAs. Persistence of these DNAs in the GIT was monitored by Southern hybridization and fluorescent in situ hybridization (FISH) or by PCR. For studies on proteins, recombinant glutathione-S-transferase was fed to mice. Survival of the protein in the GIT was then assessed by Western blotting. Depending on feeding schedules and food regimens, but irrespective of mouse strain or DNA length, fragments of the GFP gene or other DNAs were detectable for up to 18 h after feeding by Southern blot analysis. The GFP DNA could be visualized by FISH in cecal epithelia. A high fiber diet reduced the time required for food to pass through the GIT, and foreign DNA was cleared more rapidly. A high fat diet or complexing of the foreign DNA with protamine or lipofectin did not extend DNA persistence times. Undegraded GST protein was detected only in foregut contents up to 30 min after feeding. At 15 and 30 min post feeding, trace amounts of GST were found in extracts of the kidney. The GIT is constantly exposed to highly recombinogenic fragments of foreign DNA and to intact foreign proteins. Our data have implications for studies on carcinogenesis and mutagenesis, and on the pathogenicity of infectious proteins such as prions.The first two authors contributed equally to this work  相似文献   

19.
The whale shark (Rhincodon typus) is the largest extant species of fish, belonging to the order Orectolobiformes. It is listed as a “vulnerable” species on the International Union for Conservation of Nature (IUCN)'s Red List of Threatened Species, which makes it an important species for conservation efforts. We report here the first complete sequence of the mitochondrial genome (mitogenome) of the whale shark obtained by next-generation sequencing methods. The assembled mitogenome is a 16,875 bp circle, comprising of 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region. We also performed comparative analysis of the whale shark mitogenome to the available mitogenome sequences of 17 other shark species, four from the order Orectolobiformes, five from Lamniformes and eight from Carcharhiniformes. The nucleotide composition, number and arrangement of the genes in whale shark mitogenome are the same as found in the mitogenomes of the other members of the order Orectolobiformes and its closest orders Lamniformes and Carcharhiniformes, although the whale shark mitogenome had a slightly longer control region. The availability of mitogenome sequence of whale shark will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this species.  相似文献   

20.
Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome‐bearing organelles would likely include gene expression regulation. Multiple nuclear‐encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial‐encoded factors are known to actively regulate nuclear gene expression. MOTS‐c (mitochondrial open reading frame of the 12S ribosomal RNA type‐c) is a recently identified peptide encoded within the mitochondrial 12S ribosomal RNA gene that has metabolic functions. Notably, MOTS‐c can translocate to the nucleus upon metabolic stress (e.g., glucose restriction and oxidative stress) and directly regulate adaptive nuclear gene expression to promote cellular homeostasis. It is hypothesized that cellular fitness requires the coevolved mitonuclear genomes to coordinate adaptive responses using gene‐encoded factors that cross‐regulate the opposite genome. This suggests that cellular gene expression requires the bipartite split genomes to operate as a unified system, rather than the nucleus being the sole master regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号