首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialyltransferase activity and cell-cell adhesion rates of aging WI-38 cells were studied to determine the possible basis for a previously described decrease in membrane bound sialic acid and loss of proliferation of senescent cells. Ectosialyltransferase was demonstrated on the surface of both young and old WI-38 cells. The sialyltransferase assays consist of an enzyme source which is either the surface of intact cells (ectoenzyme) or a Triton X-100 cell homogenate, the nucleotide sialic acid donor (cytidine monophosphate-N-acetylneuraminic acid), and an asialo-acceptor which may be endogenous to the enzyme preparation or may be added exogenously. When sialyltransferase activity is measured in the absence of exogenous acceptors, there is a greater amount of sialic acid transferred by old cells. However, when exogenous acceptors are provided, the amount of transfer is stimulated to a greater extent in young cells equalizing the amount of sialic acid incorporated into young and old cells. This suggests that there are fewer asialoglycoproteins and that acceptor concentration is a limiting factor in assays of young cell sialyltransferase. The end result of this may be the previously described decreased amount of membrane-bound sialic acid of old cells. A change in the adhesiveness of old cells described which may be related to the altered cell surface.  相似文献   

2.
A lysine-rich area in the beta subunit of beta-hexosaminidase (beta-N-acetylhexosaminidase, EC 3.2.1.52) homologous to residues 189-203 in Cathepsin D, previously proposed as being critical for efficient lysosomal targeting, was identified. In vitro mutagenesis of the Lys residues was followed by COS-1 cell expression of enzymatic activity. The intracellular mutant beta-hexosaminidase B activity had a T1/2 at 60 degrees C similar to that of the wild type enzyme, indicating that this region is likely on the surface of the folded enzyme, as is the targeting domain of Cathepsin D. However, in the case of beta-hexosaminidase B, mutation of the Lys residues did not affect lysosomal compartmentalization. These data suggest that the hunt for the common protein signal that results in proper intracellular transport of lysosomal enzymes will not be straightforward and that Lys residues may not be an absolute requirement of the signal.  相似文献   

3.
A CMP-NeuAc:Gal beta 1----3GalNAc-R alpha 2----3-sialyltransferase has been purified over 20,000-fold from a Triton X-100 extract of human placenta by affinity chromatography on concanavalin A-Sepharose and CDP-hexanolamine-Sepharose in a yield of 10%. Sodium dodecyl sulfate-gel electrophoresis under reducing conditions revealed that the enzyme consists of a major polypeptide species with a molecular weight of 41,000 and some minor forms with molecular weights of 40,000, 43,000, and 65,000, respectively, which can be resolved partially by gel filtration on Sephadex G-100. Isoelectric focusing revealed that the enzyme occurs in a major and a minor charged form with pI values of 5.0-5.5 and 6.0, respectively. Acceptor specificity studies indicated that the enzyme catalyzes the incorporation of sialic acid from CMP-NeuAc into glycoproteins, glycolipids, and oligosaccharides which possess a terminal Gal beta----3GalNAc unit. Analysis of the structure of the product chain by high-pressure liquid chromatography and thin layer chromatography as well as methylation analysis revealed that a NeuAc alpha 2----3Gal beta 1----3GalNAc sequence is elaborated. The best glycoprotein acceptors are antifreeze glycoprotein and porcine submaxillary asialo/afucomucin. The disaccharide Gal beta 1----3GalNAc-Thr shows values for Km and V which are close to those of the latter glycoprotein. Lactose as well as oligosaccharides in which galactose is linked beta 1----3 or beta 1----4 to N-acetylglucosamine are less efficient acceptors. Of the glycolipids tested only gangliosides GM1 and GD1b served as an acceptor. The enzyme does not show an absolute aglycon specificity, and attaches sialic acid regardless the anomeric configuration of the N-acetylgalactosaminyl residue in the accepting Gal beta 1----3GalNAc unit. By use of specific acceptor substrates it could be demonstrated that the purified enzyme is free from other known sialyltransferase activities. Studies with rabbit antibodies raised against a partially purified sialyltransferase preparation indicated that the enzyme is immunologically unrelated to a Gal beta 1----4GlcNAc-R alpha 2----3-sialyltransferase, which previously had been identified in human placenta (Van den Eijnden, D.H., and Schiphorst, W. E. C. M. (1981) J. Biol. Chem. 256, 3159-3162). Initial-rate kinetic studies suggest that the sialyltransferase operates through a mechanism involving a ternary complex of enzyme, sugar donor, and acceptor. This is the first report on the extensive purification and characterization of a sialyltransferase from a human tissue.  相似文献   

4.
Asialofetuin sialyltransferase from Triton X-100 extracts of rat liver was resolved by phosphocellulose chromatography into two fractions, designated I and II in order of elution. When previously treated with Arthrobacter ureafaciens neuraminidase, fraction I eluted at about the same position as II while no alteration occurred in II. Primary rat hepatomas contained only a single asialofetuin sialyltransferase, identical to fraction I in chromatographic behavior. Transferases I and II were purified to near homogeneity. Transferase II, as well as neuraminidase-treated I, could be sialylated auto-catalytically, indicating that the lack of sialic acid in II is not due to the lack of a sialic-acid-accepting site. Both enzymes formed an (alpha 2 leads to 6)sialylgalactoside linkage with asialo-glycoproteins of the glycosylamine-type and with lactose, and were indistinguishable immunologically. Nevertheless, the transferases exhibited different molecular weights of 37000 (I) and 43000 (II). When heated at 50 degrees C, transferase I lost half its original activity within 20 min while II was scarcely inactivated. Kinetically, transferase I showed three-times higher affinity than II for CMP-N-acetylneuraminic acid and for desialylated plasma membrane. Asialofetuin sialyltransferase was also purified from primary rat hepatoma. The purified enzyme was identical to transferase I in every respect examined. We conclude that hepatomas contain transferase I but lack transferase II.  相似文献   

5.
Sugiarto G  Lau K  Yu H  Vuong S  Thon V  Li Y  Huang S  Chen X 《Glycobiology》2011,21(3):387-396
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami? B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.  相似文献   

6.
Membrane-associated sialyltransferase complexes of Escherichia coli K-235 catalyze the synthesis of sialyl polymers which remain associated with the cell envelope. Sialyl monophosphorylundecaprenol is an intermediate in the formation of these unique surface structures, and fluidity of the lipid phase is required for the proper function of the enzyme complex (Troy, F.A., Vijay, I.K., and Tesche, N. (1975) J. Biol. Chem. 250, 156-163, 164-170). In membranes containing an increased unsaturated fatty acid content of the phospholipids, obtained by growing cells at 15 degrees C, synthesis of polysialic acid was uncoupled from synthesis of the sialyl lipid-linked intermediate. Using reconstruction experiments, the importance of the role of an endogenous acceptor in polymer formation was suggested by the unexpected finding that polysialic acid synthesis could be reactivated in inactive membranes by the addition of an exogenous acceptor which contained sialic acid. Concomitant with polymer synthesis was a rapid loss of labeled sialic acid from the lipid phase. The activated sialic acid was shown to be transferred directly to the exogenous acceptor. These results establish: 1) that the temperature-induced alteration in polymer synthesis resulted from the inability of cells grown at 15 degrees C to either synthesize or assemble a functional endogenous acceptor and not from a defect in the synthesis of the sialyltransferase; 2) the intermediate precursor role of lipid-soluble sialic acid in sialyl polymer synthesis; and 3) that the exogenous acceptor served directly as an "acceptor" and not as a catalytic "effector" which stimulated an inactive membrane-enzyme complex. These results are in accord with the possibility that the low temperature-induced derangement in polymer formation is a consequence of the altered lipid structure resulting from the greater unsaturated fatty acid content in the membrane phospholipids. U-14C-labeled exogenous acceptor was isolated from the culture filtrate of cells grown at 37 degrees C and purified to homogeneity by preparative polyacrylamide gel electrophoresis. The pure acceptor was characterized structurally as a homopolymer of sialic acid with a degree of polymerization of approximately 12. Potassium borohydride reduction of the acceptor prior to complete hydrolysis with neuraminidase established that the polymer possessed a free reducing terminus of sialic acid. Subsequent structural studies showed that these oligomers of sialic acid appeared in the culture filtrate as a result of acid-catalyzed hydrolysis from membrane-associated polysialic acids of about 150 to 200 sialyl residues. Marked diminution of several membrane proteins was observed for cells grown at 15 degrees C. The possible relationship of these alterations to the upward shift in unsaturated lipids and to the loss of a functional endogenous acceptor is currently under study.  相似文献   

7.
In order to examine the effects of altered protein sialylation on neural cell function, B104 rat neuroblastoma cells were stably transfected with the cDNA coding for 2,6(N) sialyltransferase (ST(6)N). Lectin blot analysis of the clones demonstrated an increase in staining of the Sambucus nigra lectin, which detects 2,6 linked sialic acid, in parallel with enzyme activity. There was a concomitant decrease in staining by the Maackia amurensis lectin which labels 2,3-linked sialic acid, indicating that the individual sialyltransferase enzymes may compete for penultimate galactose acceptor sites. While there was an initial increase in protein-bound sialic acid in parallel with enzyme activity, the sialylation of the cells was demonstrated to be saturable. There was an inverse relationship between cell adhesion to a fibronectin substrate and ST(6)N activity suggesting that the negatively charged sugar acts to modulate cell-substrate interaction. These cells will provide an ideal model system with which to further investigate the effect of altered sialic acid on neural cell function.  相似文献   

8.
The sialyltransferase (= glycoprotein-sialic acid transferase) was studied in the sponge Geodia cydonium, a mesozoan organism. The experiments were performed both in intact cellular and in isolated enzyme systems. It is shown, that desialylated cells show a lower aggregation potency than the controls. During aggregation enzymic sialylation of desialylated sponge cells occurs in the presence of an aggregation factor, which is associated with a high molecular weight particle. The sialylation process is temperature-dependent and can be inhibited by N-ethylmaleimide. Sialylation occurs predominantly at a distinct cell surface component, the aggregation receptor. The sialyltransferase was isolated and purified by the following steps: Sepharose 4B, CM-cellulose, Nonidet treatment, and Sephadex G-100. By this procedure the enzyme was purified 680-fold with a 31% yield. The sialyltransferase is originally associated with the high molecular weight particle also carrying the aggregation factor. In the last step the aggregation factor was separated from the sialyltransferase. The enzyme catalyzes the transfer of sialic acid from CMP-sialic acid to the desialylated aggregation receptor. The molecular weight of the sialyltransferase has been determined to be 52,000. Kinetic studies revealed no lag phase and a dependence on enzyme concentration. The purified transferase has a pH optimum of 7.75 and requires 200 mM NaCl for activity. No requirement for Mg2+ or Ca2+ could be observed. The reaction is inhibited by 10 micronM N-ethylmaleimide.  相似文献   

9.
Two highly purified plasma membrane fractions have been obtained from mouse parotid glands by a combination of differential centrifugation and isopycnic centrifugation in discontinuous sucrose gradients. The membranes were characterized by enzymic, chemical and morphological criteria. The effect of isoproterenol, which induces parotid acinar cells to proliferate, upon sialic acid and five different enzyme activities located in the plasma membrane phosphodiesterase (EC 3.1.4.1), Mg2+-ATPase (EC 3.6.1.4), leucine aminopeptidase (EC 3.4.1.1), protein kinase (EC 2.7.1.37) and sialyltransferase (EC 2.4.99.1), were quantified along the cell cycle. Plasma membrane sialic acid content falls 30% within 30 min and remains depressed for at least 6 h with the major restoration towards normal levels occurring between 12 and 16 h later. In contrast multiple daily isoproterenol injections lead to a more than 2-fold elevation of sialic acid content. Sialyltransferase activity rises 2-fold by 12 h after isoproterenol treatment and then rapidly falls. This enzyme has a pH optimum of 6.5, requires a divalent cation for activity and is inhibited by Triton X-100. Other enzyme activities showed markedly different changes after isoproterenol stimulation, either increasing, decreasing or remaining unaltered. These continuous functional modifications suggest an active role of the plasma membrane in the control of the proliferative cycle.  相似文献   

10.
Previous studies have shown that purified mitochondrial outer membrane is able to catalyze the transfer of sialic acid from CMP-Neu5Ac to an exogenous asialoglycoprotein acceptor, asialofetuin. Considering the heterogeneity of the glycan chains borne by this glycoprotein, an investigation of mitochondrial sialyltransferase activities was undertaken. Our data provide evidence for the existence of two distinct sialyltransferases in purified mitochondrial outer membranes. The use of different acceptor substrates, the temperature dependence of these enzymes, and their different sensitivity towards a sulfhydryl reagent, p-CMB, allowed us to discriminate between a galactoside alpha(2-3) sialyltransferase and a galactoside alpha(2-6) sialyltransferase presumably involved in the sialylation of O- and N-glycan chains of glycoprotein, respectively. These results are discussed in terms of mitochondrial autonomy for post-translational events.  相似文献   

11.
alpha 1-Antitrypsin phenotypes Pi M and Z, purified by the thiol-disulfide exchange procedure, were desialylated by treatment with neuraminidase covalently coupled to Sepharose and used as acceptors of sialic acid in an assay system for serum sialic acid transferase (CMP-N-acetylneuraminate:D-galactosyl-glycoprotein N-acetylneuraminyltransferase, EC 2.4.99.1) activity. Both asialoantitrypsins were equally effective as acceptors in contrast to native Pi Z antitrypsin which did not accept any sialic acid. Serum sialyltransferase activity was determined in 38 adult alpha 1-antitrypsin deficient individuals (Pi Z, MZ, FZ, SZ) with normal liver function and was found to be of the same magnitude as the activity in normal individuals (Pi M). Equal activities were also found in 5 Pi Z patients with cirrhosis of the liver. The results strongly argue against the concept that sialyltransferase deficiency provides the molecular basis for alpha 1-antitrypsin deficiency.  相似文献   

12.
The isoelectric point of angiotensin I converting enzyme (ACE) spontaneously changes from 4.3 to 4.6 during purification from human plasma. The spontaneous change in pI corresponds to that occurring with neuraminidase-treated but not with EDTA-treated samples. There is no detectable difference in the molecular weight of, or lectin binding by, the two forms of ACE with different pI's. These data indicate that ACE in the circulation contains a greater amount of sialic acid than purified ACE. The implication is that purified ACE isoenzymes which differ in sialic acid content may not reflect tissue-specific isoenzymes but rather artifacts of purification.  相似文献   

13.
Glycoprotein sialyltransferase was studied in the rat brain and in the frontal grey cortex and corpus callosum of the calf brain. Activities were measured with endogenous acceptors as well as with desialized α1-acid glycoprotein as an exogenous acceptor. The enzyme was characterized by means of its pH optimum, Km values and requirements for detergent and cations. The properties of the rat and calf brain enzymes appeared to be very similar. Substrate specificity studies indicate that more than one glycoprotein sialyltransferase reaction may occur in brain. The regional distribution of the enzyme in the calf brain was rather uniform. From this it was concluded that glycoprotein sialyltransferase, at least for the greater part, is localized in membranes other than those of the synaptic complexes, and occurs in both neurons and glia cells. The regional distribution of the amounts of endogenous glycoprotein acceptor sites, which could be calculated from the sialyltransferase activities, showed a striking correlation with that of the protein-bound sialic acid, but not with the sialyltransferase activity. The role of these endogenous glycoprotein acceptors in cerebral sialoglycoprotein biosynthesis is discussed.  相似文献   

14.
Prokaryotic derived probes that specifically recognize alpha-2,8-ketosidically linked polysialosyl units were developed to identify and study the temporal expression of these unique carbohydrate moieties in developing neural tissue (Vimr, E. R., McCoy, R. D., Vollger, H. F., Wilkison, N. C., and Troy, F. A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1971-1975). These polysialosyl units cap N-linked oligosaccharides of the complex-type on neural cell adhesion molecules (N-CAM). A Golgi-enriched fraction from 20-day-old fetal rat brain contains a membrane-associated sialyltransferase that catalyzes the incorporation of [14C]N-acetylneuraminic acid [( 14C]NeuNAc) from CMP-[14C] NeuNAc into polymeric products. At pH 6.0, 84 pmol of NeuNAc mg of protein-1 h-1 were incorporated. In sodium dodecyl sulfate-polyacrylamide gels, the major radiolabeled species migrated with a mobility expected for N-CAM. A bacteriophage-derived endoneuraminidase specific for polysialic acid was used to demonstrate that at least 20-30% of the [14C]NeuNAc was incorporated into alpha-2,8-linked polysialosyl units. This was confirmed by structural studies which showed that the endoneuraminidase-sensitive brain material consisted of multimers of sialic acid. The addition of a partially purified preparation of chick N-CAM to the membranous sialyltransferase stimulated sialic acid incorporation 3-fold. The product of this reaction was also sensitive to endoneuraminidase and contained alpha-2,8-linked polysialosyl chains, thus showing that N-CAM can serve as an exogenous acceptor for sialylation in vitro. Sialic acid incorporated into adult rat brain membranes was resistant to endoneuraminidase, indicating that the poly-alpha-2,8-sialosyl sialyltransferase activity is restricted to an early developmental epoch. It is recommended that the enzyme described here be designated CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase and the trivial name poly-alpha-2,8-sialosyl sialyltransferase be adopted.  相似文献   

15.
The pathway for biosynthesis of sialic acid capsular polysaccharide was examined in Neisseria meningitidis serogroup B strain M986 and in strain PRM102, an isogenic mutant defective in polysaccharide production. Strain PRM102 was found to possess only 25% of the level of sialyltransferase activity that was found in strain M986, but it had wild-type levels of both the N-acetylneuraminic acid (NANA) condensing enzyme and the CMP-NANA synthetase. A new meningococcal enzyme, a CMP-NANA hydrolase, was found in both meningococcal strains. This enzyme generated CMP and NANA from CMP-NANA, had a Km of 0.88 microM, had a Vmax of 10.75 nmol of NANA produced per h per mg of protein, and was completely inhibited by 45.3 microM CMP. The sialyltransferase, which also had CMP-NANA as substrate, was insensitive to CMP addition. Subcellular fractionation and purification of cytoplasmic and outer membranes on sucrose density gradients revealed that both the sialyltransferase and the CMP-NANA hydrolase were cytoplasmic membrane associated. The NANA condensing enzyme and the CMP-NANA synthetase were found to be cytosolic. A working hypothesis for the regulation of sialic acid polysaccharide synthesis was developed. The CMP-NANA hydrolase with its high affinity for CMP-NANA regulates polysaccharide formation by the sialyltransferase, whereas CMP, a product of both the sialyltransferase and the CMP-NANA hydrolase, modulates the activity of the hydrolase on the cytoplasmic membrane.  相似文献   

16.
    
A method for the assay of CMP-NeuAc:(NeuAc2 8) n (colominic acid) sialyltransferase activity was developed. Using a 1-day-old rat brain membrane fraction as an enzyme preparation optimal activity was obtained at pH 6.5, 0.3% Triton X-100, and 5mm MnCl2. However, no absolute cation requirement was found as EDTA only partially inhibited the activity. Within a concentration range of 0.3–3 mg colominic acid (which consists of a mixture of oligomers of 2 8-linked sialic acid) per 50 µl aV of 0.61 nmol per mg protein h–1 was estimated while a half-maximal reaction velocity was obtained at a concentration of 1.75 mg per 50 µl. High performance anion-exchange chromatography of the radioactive products formed in the reaction showed that sialic acid oligomers ranging in size from a degree of polymerization (DP) of 2 up to at least DP 9 could serve as acceptor substrates. Comparison of the acceptor properties of DP 3 and DP 6 showed that the larger oligomer was acted upon with a 10-fold higher efficiency. Periodate oxidation of the products followed by reduction and hydrolysis yielded the C7 analogue of NeuAc as the only radioactive product, indicating that under the conditions of the assay only a single sialic acid residue was introduced into the acceptor molecules. Using the assay it appeared that in rat brain the activity of this sialyltransferase decreased six-fold during postnatal development to the adult stage. The assay method was also applied to lysates of several neuroblastoma and small cell lung tumour cell lines, which differ in the expression of polysialic acid as well as of the neural cell adhesion molecule NCAM, a major carrier of this polymer. Activity of the sialyltransferase appeared to be correlated with the expression of polysialic acid present on NCAM. These results indicate that this sialyltransferase might function in the process of poly-sialylation.Abbreviations DP degree of polymerization - HPLC high-performance liquid chromatography - NeuAc N-acetylneuraminic acid - NCAM neural cell adhesion molecule - PSA polysialic acid - Sia sialic acid  相似文献   

17.
Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products.  相似文献   

18.
Two different sialyltransferases (EC 2.4.99.1) have been resolved from Triton X-100 extracts of porcine submaxillary glands by affinity chromatography on CDP-hexanolamine agarose. The predominant sialyltransferase of this tissue, a CMP-N-acetylneuraminate: alpha-D-N-acetylgalactosaminide alpha2 leads to 6 sialyltransferase, has been obtained in a partially purified and stable form. A less abundant but highly active enzyme, a CMP-N-acetylneuraminate: beta-D-galactoside alpha2 leads to 3 sialyltransferase, was purified over 90,000-fold to homogeneity. Chromatography of the latter enzyme on Sephadex G-200 separated two noninterconverting forms, designated A and B, with Stokes radii of 51 A and 31 A, respectively. Both forms have equal specific activity toward lactose and contain a single polypeptide with a molecular weight of about 50,000 as estimated by gel electrophoresis. Form A appears to bind 1.18 g of Triton X-100 per g of protein, or nearly an entire detergent micelle per polypeptide, while Form B binds little or no detergent. The enzymatic properties of both forms are similar (Rearick, J.I., Sadler, J.E., Paulson, J.C., and Hill, R.L. (1979) J. Biol. Chem. 254, 4444-4451) supporting the conclusion that Form A may represent the native sialyltransferase with an intact membrane-binding site, and Form B may be a large proteolytic fragment of Form A.  相似文献   

19.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

20.
V Liepkans  A Jolif  G Larson 《Biochemistry》1988,27(23):8683-8688
Purified lactotetraosylceramide (Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc1-Cer) was tested for its ability to accept [14C]sialic acid from CMP-[14C]sialic into monosialoganglioside fractions in the presence of membrane fractions purified from human colorectal carcinoma cells (SW1116). Membrane fractions were isolated by three different methods: sucrose density centrifugation, CMP-agarose gel column chromatography, and LcOse4 gel chromatography. We optimized the incubation conditions for detergent dependency (taurocholate), pH (6.3), and acceptor concentration. The sialyltransferase activity was dependent on membrane protein and linear for time up to at least 4 h. The LcOse4 affinity chromatography of the crude microsomal membrane pellet from these cells yielded a membrane fraction that was 136-fold enriched in LcOse4 acceptor specific activity compared to cell homogenates. The apparent Km for the sialyltransferase activity with LcOse4Cer acceptor in the presence of affinity-purified membranes was 20 microM and the Vmax was 7 pmol h-1 (100 micrograms of protein)-1. Acceptor capabilities of other core structures were 5-20-fold lower: LcOse4Cer much greater than GgOse4Cer greater than nLcOse4Cer much greater than GbOse4Cer. The enzymatic activity was purified further (900-fold) by a combination of LcOse4 and CMP affinity gels. SDS-PAGE electrophoresis of this material showed a major set of closely migrating bands of Mr 58,000-54,000 compared to authentic proteins, as well as a minor band at 27,000. We analyzed picomole quantities of the radioactive product by convenient controlled short-term hydrolyses with an endoglycoceramidase and sialidases (from four different sources) in comparison to sialylated tetrasaccharides of known structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号