首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic parameters for the hydrolysis of a number of physiologically important phosphoesters by purified human liver alkaline phosphatase have been determined. The enzyme was studied at pH values of 7.0 to 10.0. The affinity of the enzyme for the compounds was determined by competition experiments and by their direct employment as substrates. Phosphodiesters and phosphonates were not hydrolysed but the latter were inhibitors. Calcium and magnesium ions inhibited the hydrolysis of ATP and PP1 and evidence is presented to show that the metal complexes of these substrates are not hydrolysed by alkaline phosphatase. A calcium-stimulated ATPase activity could not be demonstrated for the purified enzyme or the enzyme in the presence of a calcium-dependent regulator protein. Nevertheless, the influence of magnesium and calcium ions on the ATPase activity of alkaline phosphatase means that precautions must be taken when assaying for Ca2+-ATPase in the presence of alkaline phosphatase. The low substrate Km values and the hydrolysis which occurs at pH 7.4 mean that the enzyme could have a significant phosphohydrolytic role. However, liver cell phosphate concentrations, if accessible to the enzyme, are sufficient to strongly inhibit this activity.  相似文献   

2.
3.
1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo.  相似文献   

4.
Human liver acidic alpha-D-mannosidase was purified 1400-fold by a relatively short procedure incorporating chromatography on concanavalin A-Sepharose and affinity chromatography on Sepharose 4B-epsilon-aminohexanoylmannosylamine. In contrast with the acidic enzymic activity the neutral alpha-mannosidase did not bind to the concanavalin A-Sepharose so the two types of alpha-mannosidase could be separated at an early stage in the purification. The only significant glycosidase contaminant after affinity chromatography on the mannosylamine ligand was alpha-L-fucosidase, which was selectively removed by affinity chromatography on the corresponding fucosylamine ligand. The final preparation was free of other glycosidase activities. The pI of the purified enzyme was increased from 6.0 to 6.45 on treatment with neuraminidase. Although the pI and the mol.wt. (220 000) suggested that alpha-mannosidase A had been purified selectively, ion-exchange chromatography on DEAE-cellulose indicated that the preparation consisted predominantly of alpha-mannosidase B. This discrepancy is discussed in relation to the basis of the multiple forms of human alpha-mannosidase. The purified enzyme completely removed the alpha-linked non-reducing terminal mannose from a trisaccharide isolated from the urine of a patient with mannosidosis. A comparison of the activity of the pure enzyme towards the natural substrate and synthetic substrates suggests that the same enzymic activity is responsible for hydrolysing all the substrates. These results validate the use of synthetic substrates for determining the mannosidosis genotype. They are also further evidence that mannosidosis is a lysosomal storage disease resulting from a deficiency of acidic alpha-mannosidase.  相似文献   

5.
6.
Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM β-glycerophosphate (βGP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM βGP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number or APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes. J. Cell. Biochem. 64:295–312. © 1997 Wiley-Liss, Inc.  相似文献   

7.
1. The mitochondrial malate dehydrogenase from rat liver has been purified to a state of homogeneity as judged by starch-gel electrophoresis and the cytoplasmic isoenzyme has been obtained in a partically purified state. 2. Inhibition of the isoenzymes by sulphite has been studied. 3. In mitochondria loaded with sulphite, the catalytic activity of the (partially inhibited) internal malate dehydrogenase has been measured by addition of oxaloacetate to the suspension medium and observation of the consequent decrease in fluorescence of NADH. 4. Addition of mitochondrial malate dehydrogenase to suspensions of mitochondria loaded with sulphite resulted in an increase in the level of intramitochondrial enzymic activity as measured by the above technique. Addition of the cytoplasmic isoenzyme did not result in such an increase. 5. These results show that mitochondria in suspension are permeable to the mitochondrial malate dehydrogenase but not to the cytoplasmic isoenzyme. 6. This conclusion has been confirmed by direct measurement of a decrease of enzyme activity in solution and an increase inside the mitochondria after incubation of organelles in solutions containing mitochondrial malate dehydrogenase. No such effect was observed with the cytoplasmic isoenzyme. 7. Some features of the permeation process have been studied.  相似文献   

8.
9.
10.
The in vitro fermentation of several purified galacto-oligosaccharides (GOS), specifically the trisaccharides 4′-galactosyl-lactose and 6′-galactosyl-lactose and a mixture of the disaccharides 6-galactobiose and allolactose, was carried out. The bifidogenic effect of GOS at 1 % (w/v) was studied in a pH-controlled batch culture fermentation system inoculated with healthy adult human faeces. Results were compared with those obtained with a commercial GOS mixture (Bimuno-GOS). Changes in bacterial populations measured through fluorescence in situ hybridization and short-chain fatty acid (SCFA) production were determined. Bifidobacteria increased after 10-h fermentation for all the GOS substrates, but the changes were only statistically significant (P?<?0.05) for the mixture of disaccharides and Bimuno-GOS. Acetic acid, whose formation is consistent with bifidobacteria metabolism, was the major SCFA synthesized. The acetate concentration at 10 h was similar with all the substrates (45–50 mM) and significantly higher than the observed for formic, propionic and butyric acids. All the purified GOS could be considered bifidogenic under the assayed conditions, displaying a selectivity index in the range 2.1–3.0, which was slightly lower than the determined for the commercial mixture Bimuno-GOS.  相似文献   

11.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

12.
Crude human chorionic gonadotropin (hCG) was found to be several fold more immunosuppressive than purified hCG in human peripheral blood lymphocyte cultures stimulated by phytohemagglutinin, pokeweed, purified protein derivative and allogeneic cells in vitro. Immunosuppression by crude hCG was consistently noted at levels less than 1000 IU/ml and usually 80% inhibition was achieved with doses of 5000–10,000 IU/ml, whereas 40–50% inhibition or less was observed by purified hCG at 10,000 IU/ml. In two crude hCG preparations subjected to Sephadex G-100 chromatography, the fractions that inhibited lymphocyte cultures appeared in the eluate after the major peak of hCG activity. These data indicate that inhibitory substance(s) other than hCG are responsible for most of the immunosuppressive properties of first trimester pregnancy urine. Both crude and purified hCG were stimulatory to human lymphocytes when used alone without mitogens when cultured in fetal calf serum.  相似文献   

13.
Kinetics of purified liver phosphorylase   总被引:8,自引:0,他引:8  
  相似文献   

14.
Catalase enzyme (H202: oxidoreductase; E.C. 1.11.1.6) was purified from human skin homogenate using ammonium sulfate precipitation and DEAE-Sephadex A50 ion exchange chromatography at 4 degrees C and some characteristics of the enzyme were investigated. The human skin enzyme, having a specific activity of 1354.5 EU/mg proteins was purified with a yield of 43.13% and 1110-fold. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a single band for the enzyme. Inhibition by piroxicam, ketoprofen, diclofenac sodium, sulfamethoxazole and nidazole occurred with I50 values of 0.414, 1.29, 1.8, 3.83, and 8.64 mM, respectively.  相似文献   

15.
Catalase enzyme (H2O2: oxidoreductase; E.C. 1.11.1.6) was purified from human skin homogenate using ammonium sulfate precipitation and DEAE-Sephadex A50 ion exchange chromatography at 4°C and some characteristics of the enzyme were investigated. The human skin enzyme, having a specific activity of 1354.5 EU/mg proteins was purified with a yield of 43.13% and 1110-fold. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a single band for the enzyme. Inhibition by piroxicam, ketoprofen, diclofenac sodium, sulfamethoxazole and nidazole occurred with I50 values of 0.414, 1.29, 1.8, 3.83, and 8.64 mM, respectively.  相似文献   

16.
17.
Murine spleen cells developed into nonspecific cytotoxic cells within 72 hr of culture in the presence of highly purified sources of human interleukin 2. In whole spleen cell cultures, human interleukin 2 generated effector cells which were Thy 1.2+, Lyt 2.2+, resistant to γ irradiation (1000 R), and capable of lysing both H-2 compatible and incompatible targets. The effector cells generated in this manner were not restricted to classical natural killer cell-sensitive targets. If thymus-derived cells (T cells) were depleted from the spleen cell population before culture with human interleukin 2, the effector cells generated were enriched in effectors capable of lysing natural killer cell-sensitive targets. Interferon was not produced in interleukin 2-stimulated spleen cell cultures. In addition, heterologous antibody to murine -γ-interferon did not abrogate the generation of cytotoxic cells by human interleukin 2. These and additional data suggest that human interleukin 2 is capable of stimulating γ-irradiation-sensitive Thy 1.2+ cell(s) capable of lysing a variety of target cells regardless of inherent sensitivities to classical natural killer cells. Thy 1.2? cells were also stimulated by human interleukin 2 and lysed only natural killer cell-sensitive targets. Human interleukin 2 caused some Thy 1.2? cells to become susceptible to lysis by anti-Thy 1.2 serum and complement.  相似文献   

18.
A recombinant IgG3 antibody with Phe-243 replaced by Ala (FA243) was expressed in a CHO-K1 parental cell line. The resulting IgG-Fc-linked carbohydrate was significantly alpha2,3-sialylated (53% of glycans), as indicated by normal- and reverse-phase HPLC analyses. Following transfection of a rat alpha2,6-sialyltransferase gene into this parental cell line, IgG-Fc-linked glycans were sialylated (60% of glycans) such that the ratio of alpha2,6- to alpha2,3-linked sialic acid was 0.9:1.0. By comparison, the wild-type IgG3 (F243) is minimally sialylated (2-3% alpha2,3-linked), thus suggesting that sialylation is controlled primarily by the protein structure local to the carbohydrate and that the two sialyltransferases compete to sialylate the nascent oligosaccharide. The additional alpha2,6-sialylation affected the function of the recombinant antibody. FA243 IgG3 having both alpha2,6 and alpha2,3-sialylation restored recognition to wild-type IgG3 levels for human FcgammaRI, FcgammaRII, and target cell lysis by complement. We discuss how sialylation linkage could modulate IgG function.  相似文献   

19.
Studies have been performed to determine the proportion of the esterified cholesterol in high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) that is attributable to a direct action of lecithin: cholesterol acyltransferase on each lipoprotein fraction. Esterification of [3H]cholesterol was examined in 37 degrees C incubations of either: (a) unseparated whole plasma, (b) plasma reconstituted after prior ultracentrifugation to separate the 1.21 g/ml supernatant, (c) a mixture comprising the 1.21 g/ml supernatant of plasma and purified lecithin: cholesterol acyltransferase or (d) the same mixture as (c) after supplementation with a preparation of partially purified lipid transfer protein. Each of these incubations was performed using samples collected from four different subjects, two of whom had normal and two of whom had elevated concentrations of plasma triacylglycerol. At the completion of 3-h incubations, the lipoproteins were separated into multiple fractions by gel filtration to obtain a continuous profile of esterified [3H]cholesterol across the whole spectrum of lipoproteins. There was an appearance of esterified [3H]cholesterol in each of the major lipoprotein fractions in all incubations. In unseparated plasma, 56% of the total (mean of four experiments) was in HDL, 33% in LDL and 11% in VLDL. A comparable distribution was observed in the incubations of reconstituted plasma and in the samples to which partially purified lipid transfer protein had been added. In the absence of lipid transfer protein activity in incubations containing purified lecithin: cholesterol acyltransferase, 73% of the esterified [3H]cholesterol was in HDL, 25% in LDL and only 1% in VLDL. It has been concluded that at physiological concentrations of lipoproteins, 70-80% of the cholesterol esterifying action of lecithin: cholesterol acyltransferase is confined to the HDL fraction, with most of the remainder involving the LDL fraction. Of the newly formed esterified cholesterol incorporated into LDL during incubations of unseparated plasma, it was apparent that more than 70% was independent of activity of the lipid transfer protein. Of that incorporated into VLDL in unseparated plasma, in contrast, almost 90% was derived as a transfer from other fractions as a consequence of activity of the lipid transfer protein.  相似文献   

20.
Rat liver glucocorticoid receptor was purified in the presence of molybdate by a three-step procedure comprising protamine sulfate precipitation, affinity chromatography on a dexamethasone matrix and high-performance size-exclusion chromatography (HPSEC) on a TSK G 3000 SW column. The [3H]triamcinolone-acetonide-receptor complex was obtained in 20% yield with an overall 11 800-fold purification. The dissociation rate constant of this complex was 1.6 X 10(-4) min-1. The purified receptor sedimented at 8.3 S in high-salt and 9.4 S in low-salt sucrose gradients containing molybdate. A 7.0-nm Stokes radius was determined by HPSEC on a TSK G 4000 column in high-salt buffer. The calculated Mr was 278000. Dodecyl sulfate/polyacrylamide gel electrophoresis revealed an almost homogeneous 90 000-Mr band. Three minor bands with Mr of 78 000, 72 000 and 48 000 were also inconstantly seen. An apparent pI = 5.1 was observed for the [3H]steroid complex by isoelectric focusing in agarose gel. Furthermore high-performance ion-exchange chromatography of the purified complex on a DEAE 545 LKB column (DEAE HPLC) yielded a sharp peak eluted at a 315 mM potassium ion concentration. This peak was shown to contain almost all the 90 000-Mr protein. Moreover the purified receptor complex appeared to be transformable to a DNA-binding state after molybdate removal followed by warming 30 min at 25 degrees C in presence of 0.2% bovine serum albumin: 50-78% transformation yield could be demonstrated by DNA-cellulose chromatography. Partial transformation could also be obtained at 0 degrees C in the absence of any added protein and was followed by DEAE HPLC. The transformed complex was eluted by 180 mM potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号