首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cost GJ 《Nature protocols》2007,2(9):2198-2202
This protocol describes a method for the one-tube preparative-scale assembly of a specific DNA molecule, the enzymatic ligation assisted by nucleases (ELAN) technique. DNA fragments in ligation reactions are capable of combining to produce numerous products. The ELAN method uses judicious choice of restriction enzyme sites coupled with simultaneous digestion and ligation reactions to create just one product, by converting off-pathway products back into substrate. The experimental parameters critical for a successful ELAN reaction are discussed, and the ordered, one-tube assembly of four DNA fragments in the presence of eight restriction enzymes is demonstrated. This technique will be useful to those performing gene construction, DNA computing, biophysics and even standard molecular cloning. Starting with reactant fragments, the protocol takes 4-16 h to produce nanogram to microgram yields, depending on the complexity of the reaction.  相似文献   

2.
Conventional subcloning into plasmid vectors often involves dephosphorylation, gel electrophoresis, DNA extraction, and purification to isolate the target insert and the cleaved plasmid. This is not only time-consuming but very often problematic. We have developed strategies that can circumvent these steps by mixing digested donor and recipient plasmids together for ligation. These strategies capitalizes on: (1) the ability to enhance the ligation efficiency of desired DNA fragments into the target vector by the generation and removal of small (<50 bp) fragments from nontarget DNA using peripheral restriction sites and spin column technology and (2) the elimination of undesired ligation products after ligation by using the Lac Z gene, differences in antibiotic resistance among plasmid vectors, and unique restriction sites situated in nontarget DNA fragments.  相似文献   

3.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   

4.
We report the site-specific fluorescent labeling of DNA using Staudinger ligation with high efficiency and high selectivity. An oligonucleotide modified at its 5' end by an azido group was selectively reacted with 5-[(N-(3'-diphenylphosphinyl-4'-methoxycarbonyl)phenylcarbonyl)aminoacetamido]fluorescein (Fam) under aqueous conditions to produce a Fam-labeled oligonucleotide with a high yield (approximately 90%). The fluorescent oligonucleotide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Because of the relatively high yield of the Staudinger ligation, simple purification of the product by size-exclusion chromatography and desalting is sufficient for the resulting fluorescent oligonucleotide to be used as a primer in a Sanger dideoxy sequencing reaction to produce fluorescent DNA extension fragments, which are analyzed by a fluorescent electrophoresis DNA sequencer. The results indicate that the Staudinger ligation can be used successfully and site-specifically to prepare fluorescent oligonucleotides to produce DNA sequencing products, which are detected with single base resolution in a capillary electrophoresis DNA sequencer using laser-induced fluorescence detection.  相似文献   

5.
6.
D Y Wu  R B Wallace 《Genomics》1989,4(4):560-569
A novel DNA sequence detection method that utilizes the ligation of oligonucleotide pairs that are complementary to adjacent sites on appropriate DNA templates is described. The product is increased by either linear or exponential amplification using sequential rounds of template-dependent ligation. In the case of linear amplification, a single pair of oligonucleotides is ligated, the reaction is heated to dissociate the ligation product, and an additional round of ligation is performed. After n rounds there is a (1 + x) X n-fold amplification of product, where x is the efficiency of the ligation reaction. Exponential amplification utilizes two pairs of oligonucleotides, one complementary to the upper strand and one to the lower strand of a target sequence. The products of the ligation reaction serve as templates for subsequent rounds of ligation. In this case there is (1 + x)(n-1)-fold amplification of product after n rounds. A single base-pair mismatch between the annealed oligonucleotides and the template prevents ligation, thus allowing the distinction of single base-pair differences between DNA templates. At high template concentrations, the ligation reaction has an efficiency approaching 100%. In this report, we demonstrate the use of the ligation amplification reaction (LAR) to distinguish the normal from the sickle cell allele of the human beta-globin gene. We also report the use of LAR as a detection system for polymerase chain reaction-enriched DNA sequences.  相似文献   

7.
Controlled twisting of individual, double-stranded DNA molecules provides a unique method to investigate the enzymes that alter DNA topology. Such twisting requires a single DNA molecule to be torsionally constrained. This constraint is achieved by anchoring the opposite ends of the DNA to two separate surfaces via multiple bonds. The traditional protocol for making such DNA involves a three-way ligation followed by gel purification, a laborious process that often leads to low yield both in the amount of DNA and the fraction of molecules that is torsionally constrained. We developed a simple ligation-free procedure for making torsionally constrained DNA via polymerase chain reaction (PCR). This PCR protocol used two ‘megaprimers’, 400-base-pair long double-stranded DNA that were labelled with either biotin or digoxigenin. We obtained a relatively high yield of gel-purified DNA (∼500 ng/100 µl of PCR reaction). The final construct in this PCR-based method contains only one labelled strand in contrast to the traditional construct in which both strands of the DNA are labelled. Nonetheless, we achieved a high yield (84%) of torsionally constrained DNA when measured using an optical-trap-based DNA-overstretching assay. This protocol significantly simplifies the application and adoption of torsionally constrained assays to a wide range of single-molecule systems.  相似文献   

8.
Scanning mutagenesis is an attractive tool for protein structure-function correlation analysis. With one round of this method it is possible to obtain a library containing all possible single-residue mutants of the protein of interest. The practical application of this approach is currently limited by the large number and cost of the required 30-35mer oligonucleotides. As an alternative, we studied the ligation of shorter DNA oligonucleotides (6-11mer) containing a degenerate binding site and a desired mutation mismatch to a nested set of megaprimers annealed to the gene of interest. T4 DNA ligase was able to perform this task, and the obtained ligation products were elongated by DNA polymerase. The effectiveness of ligation depends on the length of the random binding site of the mutagenic oligonucleotide, on its molar excess over the template-primer complex and on the position of the mismatching tri-nucleotide insert with respect to the joining site. The secondary structure of the DNA template close to the joining site also influences the ligation yield. Mismatching oligonucleotides, protected by a 3'-phosphate group, were joined to a nested set of megaprimers, the latter being obtained by a novel procedure called reversible chain termination, i.e., termination of the dsDNA synthesis with ddNTP followed by the subsequent removal of the incorporated ddNMP with exonuclease III. T7 sequenase 2.0 DNA polymerase elongated the ligation products after the 3'-phosphate protection group was removed with T4 polynucleotide kinase, resulting in the incorporation of a specific tri-nucleotide mismatch into dsDNA. This sequence of reactions serves as the basis for a novel scanning mutagenesis procedure.  相似文献   

9.
A novel method for the directional cloning of native PCR products was developed. Abasic sites in DNA templates make DNA polymerases stall at the site during synthesis of the complementary strand. Since the 5′ ends of PCR product strands contain built-in amplification primers, abasic sites within the primers result in the formation of 5′ single-stranded overhangs at the ends of the PCR product, enabling its direct ligation to a suitably cleaved cloning vector without any further modification. This “autosticky PCR” (AS-PCR) overcomes the problems caused by end sensitivity of restriction enzymes, or internal restriction sites within the amplified sequences, and enables the generation of essentially any desired 5′ overhang.  相似文献   

10.
Conventional cloning requires the purification of restriction-enzyme-digested vectors prior to the ligation reaction. The purification often involves the separation of restriction fragments via electrophoresis, the cutting out of a piece of gel, and the gel extraction of the linearized vector. In addition to the loss of significant amounts of DNA, reduced cloning efficiency, time, and cost, these steps are also mutagenic to DNA and hazardous to humans. We developed a purification-free cloning vector pGT3 with a bright green fluorescent protein indicator that is suitable for TA cloning of polymerase chain reaction (PCR) products. PCR products were cloned into pGT3 efficiently without the gel purification steps.  相似文献   

11.
12.
Chromosome conformation capture (3C) and derivative experimental procedures are used to estimate the spatial proximity between different genomic elements, thus providing information about the 3D organization of genomic domains and whole genomes within the nucleus. All C-methods are based on the proximity ligation–the preferential ligation of joined DNA fragments obtained upon restriction enzyme digestion of in vivo cross-linked chromatin. Here, using the mouse beta-globin genes in erythroid cells as a model, we estimated the actual frequencies of ligation between the fragments bearing the promoter of the major beta-globin gene and its distant enhancers and showed that the number of ligation products produced does not exceed 1% of all fragments subjected to the ligation. Although this low yield of 3C ligation products may be explained entirely by technical issues, it may as well reflect a low frequency of interaction between DNA regulatory elements in vivo.  相似文献   

13.
高剪接活性断裂蛋白质内含子的体内切割   总被引:1,自引:1,他引:0  
蛋白质内含子介导的断裂(切割)反应被用于蛋白质纯化、连接和环化等,但目前仍存在断裂效率低、断裂反应的不可控、产物复杂等问题。蛋白质内含子的定点突变可导致其N端或C端断裂。其末位氨基酸突变则剪接反应第3步天冬酰胺环化无法进行,发生N端断裂;其首位氨基酸发生突变则剪接反应第一步酰基重排及其后续步骤均无法进行,而天冬酰胺环化仍可进行,发生C端断裂。利用已获得的高剪接活性的S1和S11型断裂蛋白质内含子Ssp GyrB,分别将其参与剪接反应的首位半胱氨酸或末位天冬酰胺突变为丙氨酸,构建能够发生一端断裂的断裂蛋白质内含子。研究结果表明,突变后断裂蛋白质内含子的剪接反应几乎不发生,其断裂活性有不同程度的提高,获得了在大肠杆菌体内具有较高效断裂活性的断裂蛋白质内含子。这将为进一步研究其体外可控性剪接、构建高效的蛋白纯化系统和深入研究蛋白质内含子的剪接机制提供基础。  相似文献   

14.
Here we report the development of a gene-synthesis technology, circular assembly amplification. In this approach, we first constructed exonuclease-resistant circular DNA via simultaneous ligation of oligonucleotides. Exonuclease- and subsequent mismatch cleaving endonuclease-mediated degradation of the resulting ligation mixture eliminated error-rich products, thereby substantially improving gene-synthesis quality. We used this method to construct genes encoding a small thermostable DNA polymerase, a highly repetitive DNA sequence and large (>4 kb) constructs.  相似文献   

15.
A new method for specific reamplification of DDRT-PCR products is presented. After transient ligation of the primary DDRT-PCR fragments into a T-vector, the cDNAs of interest were reamplified by hemi-nested PCR and thermally asymmetric cycles. In contrast to the originally described protocol, this method of reamplification is specific, sensitive, reproducibly gives a high yield of DNA and allows direct sequencing of the reamplified product without purification or cloning.  相似文献   

16.
Splicing by directed ligation (SDL) is a method of in-phase joining of PCR-generated DNA fragments that is based on a pre-designed combination of class IIS restriction endonuclease recognition and cleavage sites. Since these enzymes cleave outside of their recognition sites, the resulting sticky end can have any desired sequence, and the site itself can be removed and does not appear in the final spliced DNA product. SDL is based on the addition of class IIS recognition sites onto primers used to amplify DNA sequences. Cleavage of the PCR products results in elimination of the recognition site-containing flanking sequences and leaves the DNA fragments crowned with protruding ends. With careful design of the sticky ends, several segments can be ligated together in a predetermined order in a single reaction. SDL requires fewer rounds of amplification than overlap extension methods, and is particularly useful for creating a series of recombinants that differ in one segment.  相似文献   

17.
18.
A novel method for the directional cloning of native PCR products was developed. Abasic sites in DNA templates make DNA polymerases stall at the site during synthesis of the complementary strand. Since the 5′ ends of PCR product strands contain built-in amplification primers, abasic sites within the primers result in the formation of 5′ single-stranded overhangs at the ends of the PCR product, enabling its direct ligation to a suitably cleaved cloning vector without any further modification. This “autosticky PCR” (AS-PCR) overcomes the problems caused by end sensitivity of restriction enzymes, or internal restriction sites within the amplified sequences, and enables the generation of essentially any desired 5′ overhang. Received: 11 August 1998 / Accepted: 2 October 1998  相似文献   

19.
An active area of research in the development of Streptococcus gordonii for use as a bacterial commensal vector involves the identification and utilization of strong promoters for high-level expression of heterologous products. Escherichia coli plasmid vectors containing different streptococcal promoters often fail to become established in E. coli for unknown reasons. Therefore, it is desirable at times to transform S. gordonii, which is naturally competent, with small quantities of nascently ligated DNA without using E. coli first to amplify or screen the product. By comparing the efficiency of two methods used to induce competence in S. gordonii, it was shown that the use of a synthetic competence stimulating peptide substantially enhanced plasmid uptake by S. gordonii. We amplified the amylase-binding protein (abpA) promoter from the S. gordonii genome and, using a synthetic peptide to induce competence, directly introduced plasmid DNA containing this promoter into S. gordonii as an unamplified product of ligation. This plasmid facilitated abundant secretion of a heterologous product by S. gordonii. By assessing the levels of heterologous product secreted by two plasmid constructs, it was possible to evaluate the relative strength of two native promoters.  相似文献   

20.
Procedures have been developed which simplify and expedite the screening of recombinant DNA constructions for those which only exhibit the desired DNA-DNA junctions. A synthetic DNA oligonucleotide designed to span (or "bridge") sequences around correct restriction enzyme junctions was used as a hybridization probe for the rapid identification of those sequences in several molecular cloning methodologies. It facilitated analyses of the products of random ligation reactions, as well as constructions harbored in bacteria and bacteriophage. "Bridge" probes, [32P]-end-labeled to very high specific activity, remained useful after several hybridizations and often circumvented lengthy restriction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号