首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

2.
Japanese lawngrass (Zoysia japonica) and Manila grass (Z. matrella) are the two most important and commonly used Zoysia species. A consensus based SSR linkage map was developed for the genus by combining maps from each species. This used previously constructed maps for two Z. japonica populations and a new map from Z. matrella. The new SSR linkage map for Z. matrella was based on 86 F2 individuals and contained 213 loci and covered a map distance of 1,351.2 cM in 32 linkage groups. Comparison of the three linkage maps constructed from populations with different genetic backgrounds indicated that most markers exhibited a consensus order, although some intervals or regions displayed discrepancy in marker orders or positions. The integrated map comprises 507 loci with a mean interval of 4.1 cM, covering a map distance of 2,066.6 cM in 22 linkage groups. The SSR-based map will allow marker-assisted selection and be useful for the mapping and cloning of economically important genes or quantitative trait loci.  相似文献   

3.
The orange inner leaf of the Chinese cabbage is controlled by a single recessive gene (or), which causes abnormal accumulation of carotene. In the present study, an F2 population consisting of 600 individuals was used for mapping or and developing new markers closely linked to this gene. Bulked segregant analysis was performed by screening 435 simple sequence repeat (SSR) markers well-distributed on 10 linkage groups and 16 SSR primers derived from nine bacterial artificial chromosome (BAC) clones. On the basis of linkage analysis, the or gene was mapped in a region covering a total interval of 4.6 centimorgans (cM) between two SSR markers derived from BAC clones AC172873 and AC189246 at the end of linkage group 9, which matches with chromosome 1 of A genome in Chinese cabbage. A genetic map of the or locus was constructed by using five SSR markers and two morphological markers. Three SSR markers were tightly linked to or and two of them, sau (C) 586 and syau19, were located on the same side at distances of 1.6 and 1.3 cM, respectively. The other marker, syau15, was located on the other side at a distance of 3.3 cM. The two morphological markers, orange flower and orange cotyledon (before cotyledon turns green during the germination period), were obtained by visual determination and screening of the differences in the morphological traits between parents and the two segregated F2 populations; the two markers were designated as or-f (orange flower) and or-c (orange cotyledon). It was suggested that these two markers co-segregate with orange inner leaf trait or that the three characters, namely orange inner leaf, orange flower, and orange cotyledon, are determined by the same gene. These markers could be very helpful for marker-assisted selection in Chinese cabbage hybrid breeding programs.  相似文献   

4.
Warty fruit is one of the highly valuable external quality traits related to the market values of cucumber. Genetic analysis has shown that a single dominant gene, Tu (Tuberculate fruit), determines the warty fruit trait in the cucumber plant. An F2 population (247 individuals) from the cross of S06 × S52 was used for the mapping of the Tu/tu locus. By combining bulked segregant analysis with the sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers, 15 markers (9 SRAPs and 6 SSRs) linked to the Tu/tu locus were identified. Of nine SRAP markers, three closely linked to the Tu/tu locus were successfully converted into sequence characterized amplified region (SCAR) markers. The Tu/tu locus was mapped between the co-dominant SSR marker SSR16203 and the SCAR marker C_SC933, at a genetic distance of 1.4 and 5.9 cM, respectively. Then the linked SSR markers in the study were used as anchor loci to locate the Tu/tu locus on cucumber chromosome 5. Moreover, the validity analysis of the C_SC69 and C_SC24 markers was performed with 62 cucumber lines of diverse origins, showing that the two SCAR markers can be used for marker-assisted selection (MAS) of the warty fruit trait in cucumber breeding. The information provided in this study will facilitate the map-based cloning of the Tu/tu gene.  相似文献   

5.
The teosinte Zea nicaraguensis, a wild relative of maize, possesses a flooding tolerance-related trait: the formation of constitutive root aerenchyma under drained (non-flooded) soil conditions. A previous study suggested that the degree of constitutive aerenchyma formation varies within Z. nicaraguensis. The objectives of this study were to construct linkage maps, to determine the marker order in a region of chromosome 4 in which recombination between maize and Z. nicaraguensis is suppressed, and to identify quantitative trait loci (QTL) controlling constitutive root aerenchyma formation in two segregating populations of Z. nicaraguensis. A total of 236 simple sequence repeat (SSR) markers were screened for polymorphism in an S1 population of Z. nicaraguensis. Seventy-one polymorphic SSR markers were assigned to 10 chromosomes, and a linkage map was constructed covering 793.5 cM. In the S1 map, a paracentric inversion was detected on the long arm of chromosome 4; this rearrangement was confirmed in an S1 linkage map of a different Z. nicaraguensis accession. Composite interval mapping analysis in 96 S1 plants revealed QTL for aerenchyma formation on chromosomes 1 (bins 1.06–1.07) and 7 (bin 7.01), explaining 17 and 12% of the total phenotypic variance, respectively. The QTL on chromosome 1 was verified by using 156 S2 plants. Near-isogenic lines exhibiting the presence or absence of the aerenchyma QTL have been developed that should be useful for genetic and physiological analyses of root aerenchyma formation.  相似文献   

6.
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F2 population, i.e. “B100” of cultivated S. italica and “A10” of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces’ grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Molecular tagging and mapping of the erect panicle gene in rice   总被引:6,自引:0,他引:6  
Erect panicle (EP) is one of the more important traits of the proposed ideotype of high-yielding rice. Several rice cultivars with the EP phenotype, which has been reported to be controlled by a dominant gene, have been successfully developed and released for commercial production in North China. To analyze the inheritance of the EP trait, we generated segregating F2 and BC1F1 populations by crossing an EP-type variety, Liaojing 5, and a curved-panicle-type variety, Fengjin. Our results confirmed that a dominant gene controls the EP trait. Simple-sequence repeat (SSR) and bulked segregant analyses of the F2 population revealed that the EP gene is located on chromosome 9, between two newly developed SSR markers, RM5833-11 and RM5686-23, at a genetic distance of 1.5 and 0.9 cM, respectively. Markers closer to the EP gene were developed by amplified fragment length polymorphism (AFLP) analysis with 128 AFLP primer combinations. Three AFLP markers were found to be linked to the EP gene, and the nearest marker, E-TA/M-CTC200, was mapped to the same location as SSR marker RM5686-23, 1.5 cM from the EP gene. A local map around the EP gene comprising nine SSR and one AFLP marker was constructed. These markers will be useful for marker-assisted selection (MAS) for the EP trait in rice breeding programs.  相似文献   

8.
In order to select genotypes of Gossypium hirsutum genetically balanced and expressing the low-gossypol seed & high-gossypol plant trait introgressed from the Australian wild diploid species G. sturtianum, the [(G. hirsutum × G. raimondii)2 × G. sturtianum] triple hybrid was backcrossed to G. hirsutum and autopollinated to produce backcross and selfed progenies. Two hundred and six mapped SSR markers of G. hirsutum were used to monitor the introgression of SSR alleles specific to G. sturtianum and G. raimondii in the selected progenies. A high level of heterozygosity, varying from 25 to 100%, was observed for all G. sturtianum-specific SSR markers conserved in the most advanced progenies. These results indicate the existence of segregation distortion factors that are associated with the genes controlling the researched trait. This study represents a starting point to map the genes involved in the expression of the trait and better understand its genetic determinism.  相似文献   

9.

Background  

The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank.  相似文献   

10.
Dull/glossy fruit skin is a highly valuable external quality trait that affects the market value of cucumbers. In this study, genetic analysis showed that one single dominant gene, D (dull fruit skin), determines the dull fruit skin trait in cucumber. By combining bulked segregant analysis with 11 published polymorphic molecular markers on chromosome 5, the D/d gene was preliminarily mapped between markers SCZ69 and SSR16203, at genetic distances of 0.3 and 0.6 cM, respectively. Subsequently, a larger F2 (S06 × S94) population (842 individuals in total) was used for high-resolution mapping of the D/d gene. Finally, the D/d gene was fine-mapped between markers SSR37 and SSR112, at a physical distance of 244.9 kb (containing 31 candidate genes), using eight newly developed polymorphic simple sequence repeat (SSR) markers between SCZ69 and SSR16203. Based on semi-quantitative RT-PCR analysis, the possible candidate gene D was identified as Csa016880 or Csa016887. Meanwhile, validity analysis of the markers SSR37 and SSR112 was performed with 72 dull/glossy fruit lines, and showed that the two co-dominant SSR markers could be used for marker-assisted selection of the dull/glossy fruit trait in cucumber breeding. Moreover, this study will be helpful for cloning of the D gene in cucumber.  相似文献   

11.
Rice stripe virus (RSV) is one of the most damaging diseases affecting rice in East Asia. Rice variety 502 is highly resistant to RSV, while variety 5112 is extremely susceptible. Field statistical data revealed that all “502 × 5112” F1 individuals were resistant to RSV and the ratio of resistant to susceptible plants was 3:1 in the F2 population and 1:1 in the BC1F1 population. These results indicated that a dominant gene, designated RSV1, controlled the resistance. Simple sequence repeat (SSR) analysis was subsequently carried out in an F2 population. Sixty SSR markers evenly distributed on the 12 rice chromosomes were screened and tested. Two markers, RM229 and RM206, showed linkage with RSV1. Based on this result, six SSR markers flanking RM229 and RM206 were further selected and tested. Results indicated that SSR markers RM457 and RM473E were linked to RSV1 with a genetic distance of 4.5 and 5.0 cM, respectively. All of the four SSR markers (RM229, RM473E, RM457 and RM206) linked to RSV1 were all located on chromosome 11, therefore RSV1 should be located on chromosome 11 also. In order to find some new markers more closely linked to the RSV1 gene, sequence-related amplified polymorphism (SRAP) analysis was performed. A total of 30 SRAP primer-pairs were analyzed, and one marker SR1 showed linkage with RSV1 at a genetic distance of 2.9 cM. Finally, RSV1 gene was mapped on chromosome 11 between SSR markers RM457 and SRAP marker SR1 with a genetic distance of 4.5 cM and 2.9 cM, respectively.  相似文献   

12.
The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F2:3 families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F2 plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber.  相似文献   

13.
玉米白色叶鞘是重要的遗传研究材料。本研究以玉米白色叶鞘自交系K10为研究材料,对白色叶鞘性状进行了遗传机理初探和基因初步定位。以白色叶鞘自交系K10与多个自交系进行正反交,F1均表现为绿色叶鞘,表明该白色叶鞘性状与细胞质遗传无关,由隐性核基因控制。而F2分离比例均不符合孟德尔遗传分离定律,证明该性状受多基因控制。在拔节期利用透射电镜对F2分离群体中白色叶鞘和绿色叶鞘植株的叶绿体超微结构观察发现,白色叶鞘细胞中完整的叶绿体结构较少,且大多数没有类囊体片层及基粒。绿色叶鞘植株和白鞘植株叶片中叶绿素a、叶绿素b以及总叶绿素含量并不存在显著差异,而K10白色叶鞘中三者含量均低于正常植株叶鞘。利用SSR分子标记技术对白色叶鞘性状进行初步定位,共定位到2个基因位点,分别位于第8(qws8)和第9(qws9)染色体。  相似文献   

14.
The genic multiple-allele inherited male-sterile gene Ms in Chinese cabbage (Brassica rapa L.) was identified as a spontaneous mutation. Applying this gene to hybrid seed production, several B. rapa cultivars have been successfully bred in China. A BC1 population (244 plants) was constructed for mapping the Ms gene. Screening 268 simple sequence repeat (SSR) markers which cover the entire genome of Chinese cabbage was performed with bulked segregant analysis (BSA). On the basis of linkage analysis, the Ms gene was located on linkage group R07. In addition, through the amplified fragment length polymorphism (AFLP) and the sequence-characterized amplified region (SCAR) techniques combining BSA, two SCAR markers which were converted from corresponding AFLP markers flanked the Ms gene. Finally, a genetic map of the Ms gene was constructed covering a total interval of 9.0 cM. Two SCAR markers, syau_scr01 and syau_scr04, flanked the Ms gene at distances of 0.8 and 2.5 cM, respectively. All the SSR markers (cnu_m273, cnu_m030, cnu_m295, and syau_m13) were mapped on the same side of the gene as syau_scr04, the nearest one of which, syau_m13, was mapped at a distance of 3.3 cM. These SSR and SCAR markers may be useful in marker-assisted selection and map-based cloning. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag‐Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non‐SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous‐Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag‐Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high‐resolution mapping of loci in B. napus.  相似文献   

16.
The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high‐alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High‐performance liquid chromatography‐screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ~280 nm and sometimes with minor maxima at ~380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron‐dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron‐translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high‐alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress.  相似文献   

17.
Considerable genotypic variation exists in the response of different cultivars of rapeseed (Brassica napus) to B deficiency. This raises the possibility of genetic improvement of a B nutrition trait that will make the plant more tolerant to low B stress. The results of our study showed that B-efficient backcross plants had lower B concentration and more dry matter when grown at low levels of B when compared with the recurrent parent. Accordingly, we proposed that the improved B efficiency was attributed to either a high B utilization efficiency or less demand for B. The results of the genetic analysis showed that B efficiency is a dominant trait that is controlled by a single locus, namely BnBE2. By using bulked segregant analysis (BSA) in combination with amplified fragment length polymorphism (AFLP) and sequence related amplified polymorphism (SRAP) techniques, five SRAP markers and one converted single strand conformation polymorphism (SSCP) marker were identified to be linked to BnBE2 after screening 1,800 primer combinations. The six markers together with BnBE2 were mapped in a region that covered a genetic distance of 6.9 cM on a linkage group using a BC6 population. This region was located on linkage group N14 after mapping these markers in two doubled haploid (DH) populations (TNDH and BQDH). The SRAP and AFLP markers were sequenced and found to be homologous to a BAC sequence from Brassica oleracea (CC). This finding suggested that the segment containing BnBE2 locus originated from the C genome of Brassica oleracea. Three SSR markers were identified to be linked to BnBE2 through comparative mapping. All these markers might have potential value for facilitating the pyramiding of the BnBE2 gene with other B efficient genes in order to improve the B efficiency trait and for further fine mapping of the BnBE2 gene in Brassica napus.  相似文献   

18.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

19.
The genus Zoysia consists of 16 species that are naturally distributed on sea coasts and grasslands around the Pacific. Of these, Zoysia japonica, Zoysia matrella, and Zoysia tenuifolia are grown extensively as turfgrasses, and Z. japonica is also used as forage grass in Japan and other countries in East Asia. To develop simple sequence repeat (SSR) markers for zoysiagrass (Zoysia spp.), we used four SSR-enriched genomic libraries to isolate 1,163 unique SSR clones. All four libraries contained a high percentage of perfect clones, ranging from 67.1 to 96.0%, and compound clones occurred with higher frequencies in libraries A (28.6%) and D (11.6%). From these clones, we developed 1,044 SSR markers when we tested all 1,163 SSR primer pairs. Using all 1,044 SSR markers, we tested one screening panel consisting of eight Zoysia clones for testing PCR amplifications, from which five unrelated clones, among the eight, were used for polymorphism assessment, and found that the polymorphic information content ranged from 0 (monomorphic loci) to 0.88. Of the 1,044 SSR markers, 170 were segregated in our mapping population and we mapped 161 on existing amplified fragment length polymorphism-based linkage groups, using this mapping population. These SSR markers will provide an ideal marker system to assist with gene targeting, quantitative trait locus mapping, variety or species identification, and marker-assisted selection in Zoysia species.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
The availability of whole genome shotgun sequences (WGSs) in Brassica oleracea provides an unprecedented opportunity for development of microsatellite or simple sequence repeat (SSR) markers for genome analysis and genetic improvement in Brassica species. In this study, a total of 56,465 non-redundant SSRs were identified from the WGSs in B. oleracea, with dinucleotide repeats being the most abundant, followed by tri-, tetra- and pentanucleotide repeats. From these, 1,398 new SSR markers (designated as BoGMS) with repeat length ≥25 bp were developed and used to survey polymorphisms with a panel of six rapeseed varieties, which is the largest number of SSR markers developed for the C genome in a single study. Of these SSR markers, 752 (69.5%) showed polymorphism among the six varieties. Of these, 266 markers that showed clear scorable polymorphisms between B. napus varieties No. 2127 and ZY821 were integrated into an existing B. napus genetic linkage map. These new markers are preferentially distributed on the linkage groups in the C genome, and significantly increased the number of SSR markers in the C genome. These SSR markers will be very useful for gene mapping and marker-assisted selection of important agronomic traits in Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号