首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of polyamine pools is still a step impossible to circumvent in studies aimed at determining the pathophysiological role of natural polyamines. In addition, polyamine measurement in biological fluids and tissues may have clinical relevance, especially in cancer patients. Among the wide panel of analytical methods developed for the quantification of polyamines, high-performance liquid chromatographic (HPLC) separation of polyamines after derivatization with dansyl chloride remains the most commonly used method. In this work, we show that atmospheric pressure chemical ionization-mass spectrometry (MS) can be used to detect and quantify biologically relevant polyamines after dansylation, without chromatographic separation. Positive-ion mass spectra for each dansylated polyamine were generated after optimization by flow injection analysis (FIA). FIA coupled with MS detection by selected ion monitoring greatly increased the sensitivity of the polyamine detection. The method is linear over a wide range of polyamine concentrations and allows detection of quantities as low as 5 fmol. The FIA/MS method is about 50-fold more sensitive than the conventional HPLC/fluorimetry procedure. A good correlation (r>0.98) between these two methods was observed. The FIA/MS method notably reduces the time of analysis per sample to 1.5 min and turns out to be rapid, efficient, cost saving, reproducible, and sufficiently simple to allow its routine application.  相似文献   

2.
Engineered nanomaterials are commonly defined as materials with at least one dimension of 100 nanometers or less. Such materials typically possess nanostructure-dependent properties (e.g., chemical, mechanical, electrical, optical, magnetic, biological), which make them desiderable for commercial or medical application. However, these same properties may potentially lead to nanostructure-dependent biological activity that differs from and is not directly predicted by the bulk properties of the constitutive chemicals and compounds. Nanoparticles and nanomaterials can be on the same scale of living cells components, including proteins, nucleic acids, lipids and cellular organelles. When considering nanoparticles it must be asked how man-made nanostructures can interact with or influence biological systems. Carbon nanotubes (CNTs) are an example of carbon-based nanomaterial, which has won a huge spreading in nanotechnology. The incorporation of CNTs in living systems has raised many concerns because of their hydrophobicity and tendency to aggregate and accumulate into cells, organs, and tissues with dangerous effects.  相似文献   

3.
Rönnegård L  Besnier F  Carlborg O 《Genetics》2008,178(4):2315-2326
We present a new flexible, simple, and powerful genome-scan method (flexible intercross analysis, FIA) for detecting quantitative trait loci (QTL) in experimental line crosses. The method is based on a pure random-effects model that simultaneously models between- and within-line QTL variation for single as well as epistatic QTL. It utilizes the score statistic and thereby facilitates computationally efficient significance testing based on empirical significance thresholds obtained by means of permutations. The properties of the method are explored using simulations and analyses of experimental data. The simulations showed that the power of FIA was as good as, or better than, Haley-Knott regression and that FIA was rather insensitive to the level of allelic fixation in the founders, especially for pedigrees with few founders. A chromosome scan was conducted for a meat quality trait in an F(2) intercross in pigs where a mutation in the halothane (Ryanodine receptor, RYR1) gene with a large effect on meat quality was known to segregate in one founder line. FIA obtained significant support for the halothane-associated QTL and identified the base generation allele with the mutated allele. A genome scan was also performed in a previously analyzed chicken F(2) intercross. In the chicken intercross analysis, four previously detected QTL were confirmed at a 5% genomewide significance level, and FIA gave strong evidence (P < 0.01) for two of these QTL to be segregating within the founder lines. FIA was also extended to account for epistasis and using simulations we show that the method provides good estimates of epistatic QTL variance even for segregating QTL. Extensions of FIA and its applications on other intercross populations including backcrosses, advanced intercross lines, and heterogeneous stocks are also discussed.  相似文献   

4.
This paper describes a novel high-performance liquid chromatographic (HPLC) method for the determination of aromatic compounds with peroxyoxalate chemiluminescence (PO-CL ) detection following on-line UV irradiation. Aromatic compounds were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined via PO-CL detection using a mixture of bis(2,4,6-trichlorophenyl)oxalate (aryloxalate) and 2,4,6,8-tetrathiomorpholinopyrimido[5,4-d]pyrimidine (fluorophore) as a post-column CL reagent. Generation of hydrogen peroxide from aromatic compounds was confirmed using a flow injection analysis (FIA) system incorporating an enzyme column reactor immobilized with catalase. The conditions for UV irradiation were optimized using benzene and monosubstituted benzenes (phenol, benzaldehyde, nitrobenzene and N,N-dimethylaniline) by an HPLC system to evaluate the analytical performance of the proposed system. The detection limits for benzene and monosubstituted benzenes were in the range 2.1-124 pmol/injection at signal:noise (S:N) ratio = 3. Monocyclic and polycyclic hydrocarbons were also employed to investigate their CL properties. The possibility of PO-CL detection for a wide variety of aromatic compounds was shown for the first time.  相似文献   

5.
Shim J  Mackerell AD 《MedChemComm》2011,2(5):356-370
A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.  相似文献   

6.
A flow injection analysis (FIA) system was developed for the determination of cytoplasmic beta-galactosidase activity in recombinant Escherichia coli. The FIA system and its application for on-line monitoring of beta-galactosidase production during cultivation of recombinant E. coli in a 60-l airlift tower loop reactor is described. The results demonstrate that an FIA assay in conjunction with a cell disintegration step can be applied successfully for on-line monitoring of intracellular protein formation.  相似文献   

7.
In the course of preparing aryl azide derivatives for use as photoprobes, we have observed significant light sensitivity in the precursor aryl diazonium compounds. The photosensitive properties of this class of compounds are of interest since they will seek out cationic binding sites in biological targets, and can be employed to inhibit complementary targets at acid pH. The relationship between photolytic change in the structure of diazonium compounds and the corresponding change in function of a biological target are presented. Experiments are described in which the dark and light sensitive properties of a model diazonium compound, diazobenzene sulfonate (DBS), were determined. The ultraviolet spectra were used to evaluate the dark stability and light sensitivity of DBS. Chymotrypsin and trypsin served as functioning targets for further evaluation of the photochemical properties. Both enzymes are stable to the probe in the dark at acid pH. A rapid loss of enzyme activity was observed following flash photolysis of DBS-enzyme solutions. Photolytic incorporation of radioactive DBS into chymotrypsin was observed. Aryl diazonium salts can be employed to probe the availability of complementary sites in biological targets at different acid pH values.  相似文献   

8.
Soyfoods and soybean products: from traditional use to modern applications   总被引:3,自引:0,他引:3  
Soybean products (soyfoods), reported as potential functional foods, are implicated in several health-enhancing properties, such as easing the symptoms of postmenopausal women, reducing the risk of osteoporosis, preventing cardiovascular disease, and antimutagenic effects. Isoflavone, for example, is one of the most important compounds abundantly found in soybean, mainly accounting for the health-enhancing properties as mentioned earlier. However, most biological activities of isoflavones are mainly attributed to their aglycone forms. It has also been demonstrated that isoflavone aglycones are absorbed faster and in greater amount than their glycosides in human intestines. Fortunately, deglycosylation of isoflavones can be achieved during fermentation process by several strains such as lactic acid bacteria, basidiomycetes, filamentous fungus, and Bacillus subtilis with their β-glucosidase activity. This article presents an overview of soybean's chemistry, application, state-of-the-art advances in soybean fermentation processing and products as well as their applications in food and pharmaceutical industries. Different compounds, such as isoflavone, dietary fibers, and proteins which exhibit significant bioactivities, are summarized. The roles of different microorganisms in bioconversion and enhancement of bioactivities of fermented soybean are also discussed.  相似文献   

9.
能催化卤代反应的卤化酶,因其具有高效、选择性好、反应条件温和的特点受到广泛关注。其中色氨酸卤化酶是研究最多的一类酶,它的特点是可以有选择性地卤化色氨酸,主要包括氯化和溴化。而卤代化合物具有多种生物活性,在医药、化工等领域有着广泛的应用。本文主要介绍了色氨酸卤化酶的来源和种类,酶学性质及其异源表达的研究现状;重点阐述了其结构和功能之间的相互关系及催化机理;并对色氨酸卤化酶的应用以及未来发展方向进行了展望,以期为色氨酸卤化酶的开发应用提供参考。  相似文献   

10.
Several biological processes in prokaryotic and eukaryotic organisms require the presence of glycolipids (biosurfactants), compounds with both hydrophilic and hydrophobic groups in their structure. They constitute the backbone of different metabolic functions and biological structures such as cell membranes. Besides being structural components, glycolipids show surface activity in the interfaces and are mainly produced by microorganisms. Interest in biosurfactants has increased considerably in recent times due to their applications in the environmental, oil, food, and pharmaceutical industries, since they have unique properties such as low toxicity, high biodegradability, environmentally friendly, foaming capacity, high selectivity and specificity at extreme temperatures, pH and salinity, as well as biological activity. All of these properties are considered advantages over other chemical surfactants, and therefore glycolipids are considered a good alternative, given the current interest on sustainable development. The present work shows a general view of bio-surfactants of microbial origin, particularly of glycolipids, referring to several studies on their biological activity that have revealed their great potential in the medical–biological field, discovering interesting possibilities for their therapeutic application in the near future.  相似文献   

11.
The goal of this review is to highlight the wide range of biological activities displayed by purines, with particular emphasis on new purine-based agents which find potential application as chemical-biology tools and/or therapeutic agents. The expanding interest in the biological properties of polyfunctionalized purine derivatives issues, in large part, from the development of rapid high-throughput screening essays for new protein targets, and the corresponding development of efficient synthetic methodology adapted to the construction of highly diverse purine libraries. Purine-based compounds have found new applications as inducers of interferon and lineage-committed cell dedifferentiation, agonists and antagonists of adenosine receptors, ligands of corticotropin-releasing hormone receptors, and as inhibitors of HSP90, Src kinase, p38alpha MAP kinase, sulfotransferases, phosphodiesterases, and Cdks. The scope of application of purines in biology is most certainly far from being exhausted. Testing purine derivatives against the multitude of biological targets for which small molecule probes have not yet been found should thus be a natural reflex.  相似文献   

12.
Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.  相似文献   

13.
The aim of this study was to develop time-resolved immunofluorometric assays (TR-IFMA) for measuring rat (r)FSH and rLH. The advantages of these IFMAs are higher sensitivity due to lower background values, higher specificity as only intact molecules of FSH and LH can be measured, and a very long shelf life of the nonradioactive biotin antigens compared with radiolabeled iodine antigens. For rFSH, IFMAs are lacking, while for rLH, if present, the resources for antibodies are scarce or the mouse monoclonal antibodies (mMAbs) against LHalpha are inactive with FSH. Thus specific antibodies need to be obtained. With the final TR-IFMAs, rFSH and rLH levels were assessed during the estrous cycle and compared with those obtained with the more classical RIAs and fluoroimmunoassays (FIAs). Two IFMAs for rFSH were developed with mMAbs against the recombinant human (rec h)FSHbeta subunit (FSH56A) attached to the wall and two different rabbit polyclonal antibodies (PAbs) against the alpha subunit of rec hFSH (R93-2705) or recombinant rat (rec r)LH (R95-2715) conjugated with biotin as signal antibody. With both IFMAs, rFSH holo-molecules can be measured. Rat FSH standards could be assessed between 0.02 and 10 ng/ml with a detection limit of 0.05 and 0.24 ng/ml in buffer and serum, respectively. These detection limits in four IFMAs were 8- to 16-fold lower than those in RIAs and FIAs. This detection level allowed the measurement of FSH levels in serum of hypophysectomized (HYPEX) rats at 0.18 ng/ml. In serum of cycling rats, the FSH levels of the IFMA were 2-fold lower than those of the FIA, while in ovariectomized (OVX) rats the IFMA levels were comparable. A peak level of FSH was found during proestrus of Day 2 and gestation with both RIA and FIA, but with IFMAs at gestation only. An IFMA for rLH was set up with mMAb (hCG77A) reacting with rLHbeta as capture and rabbit PAb to rec rLHalpha (R95-2712) as signal antibody. Rat LH standard could be assessed between 0.001 and 10 ng/ml with a detection limit of 0.012 and 0.1 ng/ml in buffer and serum, respectively, which was 8-fold lower than that in RIA/FIA. In serum of HYPEX rats, LH was undetectable (< 0.04 ng/ml), whereas a high background level of 2.5 ng/ml was measured in the FIA. In serum of cycling rats, only a very low LH level of 0.14 ng/ml was measured, which strongly deviated from the level of 3.46 ng/ml with an FIA. The load of LH in serum of OVX rats was 2.91 ng/ml, which was 12-fold lower than that for the FIA. The peak level of LH was detected on proestrus Day 2 with RIA, FIA, and IFMA. In conclusion, two IFMAs for rFSH and one for rLH have been developed with high sensitivity and specificity for intact gonadotropins. The LH pattern during the estrous cycle was comparable between IFMA, RIA, and FIA, although the overall level in the IFMA was much lower, as were HYPEX levels. The FSH pattern differed only on proestrus Day 2 in the IFMA from that of RIA/FIA, showing a peak level with RIA/FIA and a basal level with the IFMA. This implies that in RIA/FIA measurements, proteins other than intact FSH and LH interfere with the analysis at proestrus Day 2 for FSH and in HYPEX, cycling, and OVX rats for LH.  相似文献   

14.
Data from large-scale biological inventories are essential for understanding and managing Earth's ecosystems. The Forest Inventory and Analysis Program (FIA) of the U.S. Forest Service is the largest biological inventory in North America; however, the FIA inventory recently changed from an amalgam of different approaches to a nationally-standardized approach in 2000. Full use of both data sets is clearly warranted to target many pressing research questions including those related to climate change and forest resources. However, full use requires lumping FIA data from different regionally-based designs (pre-2000) and/or lumping the data across the temporal changeover. Combining data from different inventory types must be approached with caution as inventory types represent different probabilities of detecting trees per sample unit, which can ultimately confound temporal and spatial patterns found in the data. Consequently, the main goal of this study is to evaluate the effect of inventory on a common analysis in ecology, modeling of climatic niches (or species-climate relations). We use non-parametric multiplicative regression (NPMR) to build and compare niche models for 41 tree species from the old and new FIA design in the Pacific coastal United States. We discover two likely effects of inventory on niche models and their predictions. First, there is an increase from 4 to 6% in random error for modeled predictions from the different inventories when compared to modeled predictions from two samples of the same inventory. Second, systematic error (or directional disagreement among modeled predictions) is detectable for 4 out of 41 species among the different inventories: Calocedrus decurrens, Pseudotsuga menziesii, and Pinus ponderosa, and Abies concolor. Hence, at least 90% of niche models and predictions of probability of occurrence demonstrate no obvious effect from the change in inventory design. Further, niche models built from sub-samples of the same data set can yield systematic error that rivals systematic error in predictions for models built from two separate data sets. This work corroborates the pervasive and pressing need to quantify different types of error in niche modeling to address issues associated with data quality and large-scale data integration.  相似文献   

15.
The biological role of the histidine-containing dipeptide carnosine (beta-alanyl-L-histidine) has been reviewed. The properties and putative biological role of the dipeptide in vertebrate tissues are considered. The antioxidative activity of carnosine and related compounds is described. The author's conception of the membranoprotective effect of carnosine on cells, tissues, and whole organism has been formulated. The properties of carnosine as an antistressory radioprotective agent are discussed. The data presented suggest that carnosine is a perspective immunomodulating tool which has many applications in medicine.  相似文献   

16.
Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.  相似文献   

17.
昆虫共生菌的次级代谢产物研究进展   总被引:1,自引:0,他引:1  
微生物与昆虫的共生是一种普遍现象,昆虫种类繁多,与昆虫共生的微生物也多种多样。昆虫共生菌是活性次生代谢产物的重要来源。本文对自2008年以来已报道的177个昆虫共生菌的次级代谢产物进行了统计和分析,结果表明:61.6%的化合物为新天然产物(生物碱类新化合物最多),其中,约75%的新化合物来源于昆虫共生真菌,25%来源于细菌;醌酮类化合物是昆虫共生菌源天然产物的主要结构类型,占23.2%;47.5%的化合物具有显著的抗肿瘤、抗菌、除草和抗氧化等生物活性,且化合物中的主要活性类型是抗菌和抗肿瘤活性,活性范围覆盖面最广的结构类型是生物碱类。以上结果表明昆虫共生菌的次级代谢产物是先导性化合物的重要来源且具有丰富的生物活性类型。本文以天然产物的结构分类为切入点,结合其研究菌株来源、生物活性等进行综述,旨在为充分挖掘昆虫共生菌次级代谢产物提供重要参考。  相似文献   

18.
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.  相似文献   

19.
A wide assortment of caged compounds, which are species whose biological activity can be unleashed with light, have been synthesized and used to investigate a variety of biological phenomena. In contrast, the construction of caged proteins and their application to biological systems has lagged far behind. Recent advances in the synthesis of caged proteins, as well as the development of intracellular protein delivery systems, furnish a framework upon which light-activated proteins can be designed, synthesized and employed to address questions of biological significance.  相似文献   

20.
Soil biological activities are vital for the restoration of soil contaminated with hydrocarbons. Their role includes the biotransformation of petroleum compounds into harmless compounds. In this paper, the use of biological activities as potential monitoring tools or bioindicators during bioremediation of hydrocarbon-contaminated soil are reviewed. The use of biological activities as bioindicators of hydrocarbon removal in soil has been reported with variable success. This variability can be attributed partially to the spatial variability of soil properties, which undoubtedly plays a role in the exposure of organisms to contaminants. Widely used bioindicators have been enzyme activities, seed germination, earthworm survival and microorganisms or microbial bioluminescence. A mixture of some successful utilization of biological activities and several failures, and inconsistencies reported, show that at this stage there is no general guarantee of successful utilization of biological activities as monitoring tools. Wherever possible, the use of biological activities as bioindicators of hydrocarbon removal must be used to complement existing traditional monitoring tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号