首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an aortic smooth muscle cell line, A10 cells, we investigated the effect of sphingosine 1-phosphate on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein. Sphingosine 1-phosphate significantly induced the accumulation of HSP27 in a pertussis toxin-sensitive manner. The effect was dose-dependent in the range between 0.1 and 30 microM. Sphingosine 1-phosphate stimulated an increase in the levels of mRNA for HSP27. Sphingosine 1-phosphate stimulated both p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase activation. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, did not affect sphingosine 1-phosphate-stimulated HSP27 induction. In contrast, SB203580, an inhibitor of p38 MAP kinase, reduced sphingosine 1-phosphate-induced HSP27 induction. SB203580 reduced the levels of mRNA for HSP27 induced by sphingosine 1-phosphate. These results indicate that sphingosine 1-phosphate stimulates the induction of HSP27 via p38 MAP kinase activation in aortic smooth muscle cells.  相似文献   

2.
Sphingosine 1-phosphate (Sph-1-P), a bioactive lysophospholipid capable of inducing a wide spectrum of biological responses, acts as an intercellular mediator, through interaction with the endothelial differentiation gene (EDG)/S1P family of G protein-coupled receptors. In this study, the effects of JTE-013, a specific antagonist of the migration-inhibitory receptor EDG-5, on Sph-1-P-elicited responses were examined in human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (SMCs), which expressed EDG-5 protein weakly and abundantly, respectively. This pyrazolopyridine compound reversed the inhibitory effect of Sph-1-P on SMC migration and further enhanced Sph-1-P-stimulated HUVEC migration. In contrast, its effect on Sph-1-P-induced intracellular Ca(2+) mobilization was marginal. Our results indicate that specific regulation of Sph-1-P-modulated migration responses in vascular cells can be achieved by EDG-5 antagonists and that manipulation of Sph-1-P biological activities by each EDG antagonist may lead to a therapeutical application to control vascular diseases.  相似文献   

3.
Smooth muscle cell migration and proliferation contribute to neointimal hyperplasia and vascular stenosis after endothelial denudation. Previous studies revealed that apolipoprotein E (apoE) is an effective inhibitor of platelet-derived growth factor-directed smooth muscle cell migration and proliferation and that the anti-migratory function is mediated via apoE binding to low density lipoprotein receptor-related protein-1 (LRP-1). This study was undertaken to identify the intracellular pathway by which apoE binding to LRP-1 results in inhibition of smooth muscle cell migration. The results showed that apoE increased intracellular cAMP levels 3-fold after 5 min, and the increase was sustained for more than 1 h. As a consequence, apoE also increased protein kinase A (PKA) activity in smooth muscle cells. Importantly, suppression of PKA activity with a cell-permeable peptide inhibitor of PKA abolished the inhibitory effect of apoE on smooth muscle cell migration. These results indicated that apoE inhibition of smooth muscle cell migration is mediated via the activation of cAMP-dependent PKA. Additional experiments revealed that apoE also inhibited fibroblasts migration toward platelet-derived growth factor by a similar mechanism of cAMP-dependent PKA activation. It is noteworthy that apoE failed to increase cAMP levels or inhibit migration of LRP-1-negative mouse embryonic fibroblasts and LRP-1-deficient smooth muscle cells. Taken together, these findings established the mechanism by which apoE inhibits cell migration, i.e. via cAMP-dependent protein kinase A activation as a consequence of its binding to LRP-1.  相似文献   

4.
The bioactive lipids sphingosine 1-phosphate (SPP), sphingosylphosphorylcholine, and lysophosphatidic acid play an important role in angiogenesis as a result of their effects on both the migration of endothelial cells (ECs) and the integrity of EC monolayers. Here we show that extremely low concentrations of serum and nanomolar concentrations of these biologically active lipids stimulate migration of human aortic smooth muscle cells (SMCs). However, at dosages most effective in promoting EC migration and in enhancing EC monolayer integrity, serum and SPP potently inhibited SMC migration; SPP also blocked the migration induced by protein growth factors. Treatment of SMCs with SPP induced transient phosphorylation of a 175- to 185-kDa protein corresponding to the PDGF receptor, indicating transactivation of this receptor. SPP and related lipids may play a key role in angiogenesis by coordinating the migration of both endothelial cells and vascular smooth muscle cells in response to the changing gradients of these bioactive lipid messengers.  相似文献   

5.
In previous studies, we reported that sphingosine 1-phosphate (Sph-1-P) inhibits the chemotactic motility of some cancer cell lines such as mouse melanoma cells, as well as human smooth muscle cells, at a very low concentration, as demonstrated by a transwell migration assay method (Proc. Natl. Acad. Sci. USA 89, 9698, 1992; J. Cell Biol. 130, 193, 1995). In this study, we investigated the effect of Sph-1-P on the chemotactic motility and invasiveness of human neutrophils, utilizing three different assay systems: (a) a transwell migration assay where IL-8 or fLMP was added as a chemotactic factor, (b) a phagokinetic assay with gold colloids, and (c) a trans-endothelial migration assay with human umbilical vein endothelial cells (HUVECs) plated on collagen layers. We found that among various sphingosine derivatives, Sph-1-P specifically inhibited the IL-8- or fLMP-induced chemotactic migration of neutrophils at concentrations below 1 μM. Phagokinetic activity of neutrophils was also suppressed by Sph-1-P, but more moderately than by the PKC inhibitory sphingosine analog, trimethylsphingosine. Finally, Sph-1-P inhibited trans-endothelial migration and invasiveness of neutrophils into HUVEC-covered collagen layers, whereas no effect on their adhesion to HUVECs was observed. These observations strongly suggest that Sph-1-P can act as a specific and effective motility regulator of human neutrophils, raising the possibility of future applications of Sph-1-P, or its analogs, as anti-inflammatory agents regulating invasive migration of neutrophils through endothelial layers at injured vascular sites.  相似文献   

6.
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that regulates diverse biological functions. S1P has been identified as a high-affinity ligand for a family of five G-protein-coupled receptors, known as the S1P receptors. The physiological role of the S1P receptor S1P(1) in vascular maturation was recently revealed by gene disruption in mice. In addition to other cellular processes, the binding of S1P to its receptors regulates motility and directional migration of a variety of cell types, including endothelial cells and vascular smooth muscle cells. This review focuses on the important role of S1P and its receptors in cell migration and describes a new paradigm for receptor cross-communication in which transactivation of S1P(1) by a receptor tyrosine kinase (PDGFR) is crucial for cell motility.  相似文献   

8.
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.  相似文献   

9.
The upstream signaling pathway leading to the activation of AMP-activated protein kinase (AMPK) by high density lipoprotein (HDL) and the role of AMPK in HDL-induced antiatherogenic actions were investigated. Experiments using genetic and pharmacological tools showed that HDL-induced activation of AMPK is dependent on both sphingosine 1-phosphate receptors and scavenger receptor class B type I through calcium/calmodulin-dependent protein kinase kinase and, for scavenger receptor class B type I system, additionally serine-threonine kinase LKB1 in human umbilical vein endothelial cells. HDL-induced activation of Akt and endothelial NO synthase, stimulation of migration, and inhibition of monocyte adhesion and adhesion molecule expression were dependent on AMPK activation. The inhibitory role of AMPK in the adhesion molecule expression and monocyte adhesion on endothelium of mouse aorta was confirmed in vivo and ex vivo. On the other hand, stimulation of ERK and proliferation were hardly affected by AMPK knockdown but completely inhibited by an N17Ras, whereas the dominant-negative Ras was ineffective for AMPK activation. In conclusion, dual HDL receptor systems differentially regulate AMPK activity through calcium/calmodulin-dependent protein kinase kinase and/or LKB1. Several HDL-induced antiatherogenic actions are regulated by AMPK, but proliferation-related actions are regulated by Ras rather than AMPK.  相似文献   

10.
Changes in plasma lipoprotein profiles, especially low levels of high-density lipoprotein (HDL), are a common biomarker for several inflammatory and immune diseases, including atherosclerosis and rheumatoid arthritis. We examined the effect of simvastatin on HDL-induced anti-inflammatory actions. HDL and sphingosine 1-phosphate (S1P), a bioactive lipid component of the lipoprotein, inhibited TNF alpha-induced expression of VCAM-1, which was associated with NO synthase (NOS) activation, in human umbilical venous endothelial cells. The HDL- but not S1P-induced anti-inflammatory actions were enhanced by a prior treatment of the cells with simvastatin in a manner sensitive to mevalonic acid. Simvastatin stimulated the expression of scavenger receptor class B type I (SR-BI) and endothelial NOS. As for S1P receptors, however, the statin inhibited the expression of S1P(3) receptor mRNA but caused no detectable change in S1P(1) receptor expression. The reconstituted HDL, a stimulator of SR-BI, mimicked HDL actions in a simvastatin-sensitive manner. The HDL- and reconstituted HDL-induced actions were blocked by small interfering RNA specific to SR-BI regardless of simvastatin treatment. The statin-induced expression of SR-BI was attenuated by constitutively active RhoA and small interfering RNA specific to peroxisome proliferator-activated receptor-alpha. Administration of simvastatin in vivo stimulated endothelial SR-BI expression, which was accompanied by the inhibition of the ex vivo monocyte adhesion in aortas from TNF alpha-injected mice. In conclusion, simvastatin induces endothelial SR-BI expression through a RhoA- and peroxisome proliferator-activated receptor-alpha-dependent mechanism, thereby enhancing the HDL-induced activation of NOS and the inhibition of adhesion molecule expression.  相似文献   

11.
Sphingosine 1-phosphate (S1P) levels in cells and, consequently, its bioactivity as a signalling molecule are controlled by the action of enzymes responsible for its synthesis and degradation. In the present report, we examined alterations in expression patterns of enzymes involved in S1P-metabolism (sphingosine kinases including their splice variants, sphingosine 1-phosphate phosphatases, and sphingosine 1-phosphate lyase) under certain inflammatory conditions. We found that sphingosine kinase type 1 (SPHK1) mRNA could be triggered in a cell type-specific manner; individual SPHK1 splice variants were induced with similar kinetics. Remarkably, expression and activity of S1P phosphatase 2 (SPP2) was found to be highly upregulated by inflammatory stimuli in a variety of cells (e.g., neutrophils, endothelial cells). Bandshift analysis using oligonucleotides spanning predicted NFkappaB sites within the SPP2 promoter and silencing of NFkappaB/RelA via RelA-directed siRNA demonstrated that SPP2 is an NFkappaB-dependent gene. Silencing of SPP2 expression in endothelial cells, in turn, led to a marked reduction of TNF-alpha-induced IL-1beta mRNA and protein and to a partial reduction of induced IL-8, suggesting a pro-inflammatory role of SPP2. Notably, up-regulation of SPP2 was detected in samples of lesional skin of patients with psoriasis, an inflammatory skin disease. This study provides detailed insights into the regulation of SPP2 gene expression and suggests that SPP2 might be a novel player in pro-inflammatory signalling.  相似文献   

12.
Sphingosylphosphorylcholine (SPC) is one of the biologically active phospholipids that may act as extracellular messengers. Particularly important is the role of these lipids in the angiogenic response, a complex process involving endothelial cell migration, proliferation, and morphologic differentiation. Here we demonstrate that SPC and its hydrolytic product, sphingosine, induce chemotactic migration of human and bovine endothelial cells. The response is approximately equal to that elicited by vascular endothelial cell growth factor. The effect of SPC and sphingosine was associated with a rapid down-regulation of Edg1, a sphingosine 1-phosphate (SPP)-specific receptor involved in endothelial cell chemotaxis. Both SPC and sphingosine induced differentiation of endothelial cells into capillary-like structures in vitro. Thus, SPC and sphingosine join SPP among the biologically active lipids with angiogenic potential. Since neuronal abnormalities accompany pathological accumulation of SPC in brain tissue, it is possible that SPC is a modulator of angiogenesis in neural tissue upon its release from brain cells following trauma or neoplastic growth.  相似文献   

13.
Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphate receptor expression in aortic valve interstitial cells. Exposure of cells to sphingosine 1-phosphate induced pro-inflammatory responses characterized by interleukin-6, interleukin-8, and cyclooxygenase-2 up-regulations, as observed by ELISA and Western blot. Strikingly, cell treatment with sphingosine 1-phosphate plus lipopolysaccharide resulted in the synergistic induction of cyclooxygenase-2, and intercellular adhesion molecule 1, as well as the secretion of prostaglandin E2, the soluble form of the intercellular adhesion molecule 1, and the pro-angiogenic factor vascular endothelial growth factor-A. Remarkably, the synergistic effect was significantly higher in aortic valve interstitial cells from stenotic than control valves, and was drastically lower in cells from pulmonary valves, which rarely undergo stenosis. siRNA and pharmacological analysis revealed the involvement of sphingosine 1-phosphate receptors 1/3 and Toll-like receptor-4, and downstream signaling through p38/MAPK, protein kinase C, and NF-κB. As regards pro-osteogenic pathways, sphingosine 1-phosphate induced calcium deposition and the expression of the calcification markers bone morphogenetic protein-2 and alkaline phosphatase, and enhanced the effect of lipopolysaccharide, an effect that was partially blocked by inhibition of sphingosine 1-phosphate receptors 3/2 signaling. In conclusion, the interplay between sphingosine 1-phosphate receptors and Toll-like receptor 4 signaling leads to a cooperative up-regulation of inflammatory, angiogenic, and osteogenic pathways in aortic valve interstitial cells that seems relevant to the pathogenesis of aortic stenosis and may allow the inception of new therapeutic approaches.  相似文献   

14.
In certain cell systems, including neonatal vascular smooth muscle (VSM) cells, phorbol esters are growth inhibitory. Here we show that 1,2-dioctanoyl-sn-glycerol (DiC8), when added 2 h after alpha-thrombin, reverses by greater than 95% the induction of DNA synthesis in VSM cells by alpha-thrombin. Sphingosine, a naturally occurring lysosphingolipid inhibitor of protein kinase C, and its synthetic analogues N-acetylsphingosine and C11-sphingosine were used to investigate this phenomenon further. Neither phorbol 12-myristate 13-acetate (PMA;200 ng/ml) nor sphingosine (up to 10 microM) alone had any effect upon basal DNA synthesis in VSM cells. Like DiC8, PMA totally blocked the induction of DNA synthesis by alpha-thrombin. This inhibitory effect of PMA was reversed by sphingosine in a dose-dependent manner with complete reversal at 10 microM. Neither N-acetylsphingosine nor C11-sphingosine exhibited any effect on DNA synthesis in VSM cells. The effect of sphingosine and its analogues on the activity of protein kinase C extracted from VSM cells was measured by histone III-S phosphorylation. Protein kinase C activity was inhibited 50% by 300 microM sphingosine, but less than 15% by similar concentrations of N-acetylsphingosine and C11-sphingosine. To assess the effects of sphingosine and analogues on protein kinase C in intact cells, we examined the effect of the lipids on [3H]phorbol dibutyrate binding. Sphingosine (at greater than 5 microM), but not N-acetylsphingosine or C11-sphingosine, blocked [3H]phorbol dibutyrate binding in a dose- and time-dependent fashion. Thus the mechanism of growth inhibition by DiC8 and PMA in neonatal VSM cells appears to be through activation of protein kinase C by these compounds. Sphingosine reverses this growth inhibition through interference with the binding to protein kinase C of phorbol esters or other activators of this enzyme.  相似文献   

15.
The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL action. In fact, the LDL-induced migration was markedly inhibited by pertussis toxin, an LPA receptor antagonist Ki-16425, and a small interfering RNA (siRNA) targeted for LPA(1) receptors. Moreover, LDL contains a higher amount of LPA than HDL does. HDL markedly inhibited LPA- and platelet-derived growth factor (PDGF)-induced migration, and sphingosine 1-phosphate (S1P), the content of which is about fourfold higher in HDL than in LDL, mimicked the HDL action. The inhibitory actions of HDL and S1P were suppressed by S1P(2) receptor-specific siRNA. On the other hand, the degradation of the LPA component of LDL by monoglyceride lipase or the antagonism of LPA receptors by Ki-16425 allowed LDL to inhibit the PDGF-induced migration. The inhibitory effect of LDL was again suppressed by S1P(2) receptor-specific siRNA. In conclusion, LPA/LPA(1) receptors and S1P/S1P(2) receptors mediate the stimulatory and inhibitory migration response to LDL and HDL, respectively. The balance of not only the content of LPA and S1P in lipoproteins but also the signaling activity between LPA(1) and S1P(2) receptors in the cells may be critical in determining whether the lipoprotein is a positive or negative regulator of CASMC migration.  相似文献   

16.
Sphingosine 1-phosphate (S1P) is a pleiotropic lysophospholipid mediator involved in many cellular responses, including transient calcium mobilization, activation of MAP kinase signaling, inhibition of adenylyl cyclase and increased cell migration. S1P has been shown to be an effective activator of vascular endothelial cells via the interaction with cell surface G protein-coupled receptors (GPCRs), namely S1P-R (formerly EDG-R). The potent immunomodulator, FTY720, is phosphorylated by sphingosine kinase (SK) to FTY720-P. Recently it was shown that FTY720-P, not FTY720, can bind to four out of five of the S1P-R. In the present study, we evaluated the effects of FTY720, FTY720-P, and analogues of FTY720-P: an active (R)-enantiomer [AFD(R)] and an inactive (S)-enantiomer [AFD(S)], on endothelial cell functions. Treatment of HUVEC with FTY720-P, but not FTY720, lead to a robust transient increase in calcium mobilization, detected using the fluorometric imaging plate reader (FLIPR) assay. Additionally, only the phosphorylated derivative (FTY720-P) stimulated MAPK activation. We also observed complementary activities of S1P and FTY720-P in an established in vitro endothelial morphogenesis (Matrigel tube formation) assay and an in vitro endothelial cell migration assay. Using a potent inhibitor of sphingosine kinase, N,N-dimethylsphingosine (DMS), FTY720's effects were inhibited in the migration assay, suggesting that FTY720-P is the active mediator. The effects of FTY720-P in these assays were inhibited by pre-treatment with PTx (pertussis toxin), indicating the requirement of a Gi-coupled S1P receptor. These findings suggest that agonist of S1P-R are able to regulate important endothelial cell properties, which may lead to a greater insight into vascular functions.  相似文献   

17.
FTY720, a potent immunosuppressive agent, is phosphorylated in vivo into FTY720-P, a high affinity agonist for sphingosine 1-phosphate (S1P) receptors. The effects of FTY720 on vascular cells, a major target of S1P action, have not been addressed. We now report the metabolic activation of FTY720 by sphingosine kinase-2 and potent activation of vascular endothelial cell functions in vitro and in vivo by phosphorylated FTY720 (FTY720-P). Incubation of endothelial cells with FTY720 resulted in phosphorylation by sphingosine kinase activity and formation of FTY720-P. Sphingosine kinase-2 effectively phosphorylated FTY720 in the human embryonic kidney 293T heterologous expression system. FTY720-P treatment of endothelial cells stimulated extracellular signal-activated kinase and Akt phosphorylation and adherens junction assembly and promoted cell survival. The effects of FTY720-P were inhibited by pertussis toxin, suggesting the requirement for Gi-coupled S1P receptors. Indeed, transmonolayer permeability induced by vascular endothelial cell growth factor was potently reversed by FTY720-P. Furthermore, oral FTY720 administration in mice potently blocked VEGF-induced vascular permeability in vivo. These findings suggest that FTY720 or its analogs may find utility in the therapeutic regulation of vascular permeability, an important process in angiogenesis, inflammation, and pathological conditions such as sepsis, hypoxia, and solid tumor growth.  相似文献   

18.
We characterized the molecular mechanisms by which high density lipoprotein (HDL) inhibits the expression of adhesion molecules, including vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, induced by sphingosine 1-phosphate (S1P) and tumor necrosis factor (TNF) alpha in endothelial cells. HDL inhibited S1P-induced nuclear factor kappaB activation and adhesion molecule expression in human umbilical vein endothelial cells. The inhibitory HDL actions were associated with nitric-oxide synthase (NOS) activation and were reversed by inhibitors for phosphatidylinositol 3-kinase and NOS. The HDL-induced inhibitory actions were also attenuated by the down-regulation of scavenger receptor class B type I (SR-BI) and its associated protein PDZK1. When TNFalpha was used as a stimulant, the HDL-induced NOS activation and the inhibitory action on adhesion molecule expression were, in part, attenuated by the down-regulation of the expression of S1P receptors, especially S1P(1), in addition to SR-BI. Reconstituted HDL composed mainly of apolipoprotein A-I and phosphatidylcholine mimicked the SR-BI-sensitive part of HDL-induced actions. Down-regulation of S1P(3) receptors severely suppressed the stimulatory actions of S1P. Although G(i/o) proteins may play roles in either stimulatory or inhibitory S1P actions, as judged from pertussis toxin sensitivity, the coupling of S1P(3) receptors to G(12/13) proteins may be critical to distinguish the stimulatory pathways from the inhibitory ones. In conclusion, even though S1P alone stimulates adhesion molecule expression, HDL overcomes S1P(3) receptor-mediated stimulatory actions through SR-BI/PDZK1-mediated signaling pathways involving phosphatidylinositol 3-kinase and NOS. In addition, the S1P component of HDL plays a role in the inhibition of TNFalpha-induced actions through S1P receptors, especially S1P(1).  相似文献   

19.
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.  相似文献   

20.
Tissue factor is a lipoprotein, expressed on the surface of cells, which binds coagulation Factor VII or VIIa, leading to activation of Factors X and IX with subsequent fibrin generation. Cellular tissue factor activity is important in pathophysiologic processes such as inflammation and disseminated intravascular coagulation. In this study, the long-chain base sphingosine inhibited coagulation initiated by lipopolysaccharide-stimulated intact human monocytes. Sphingosine (5-100 microM) also profoundly inhibited thromboplastin-initiated coagulation (greater than 90% decrease in thromboplastin activity). This inhibition was dose- and time-dependent. Sphingosine inhibited neither the intrinsic pathway of coagulation nor thrombin generation of fibrin. The sphingosine analogues sphingomyelin, ceramide, or N-acetylsphingosine did not affect thromboplastin activity, suggesting that the polar head of sphingosine was necessary for interaction of the molecule with the coagulation system. Investigation of the biochemical mechanism revealed that sphingosine (5-50 microM), but neither sphingomyelin nor ceramide, inhibited specific binding of radiolabeled Factor VII to lipopolysaccharide-stimulated intact monocytes. The results suggest that sphingosine may regulate monocyte tissue factor-initiated coagulation by modulating Factor VII binding to tissue factor. Sphingosine may represent a new class of inhibitors of hemostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号