首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

3.
Various proteins sharing thioredoxin (Trx)-like active site sequences (Cys-Xxx-Xxx-Cys) have been found and classified in the Trx superfamily. Among them, transmembrane Trx-related protein (TMX) was recently identified as a novel protein possessing an atypical active site sequence, Cys-Pro-Ala-Cys. In the present study, we describe the properties of this membranous Trx-related molecule. Endogenous TMX was detected as a protein of approximately 30 kDa with a cleavable signal peptide. TMX was enriched in membrane fractions and exhibited a similar subcellular distribution with calnexin localized in the endoplasmic reticulum (ER). The examination of membrane topology of TMX suggested that the N-terminal region containing the Trx-like domain was present in the ER lumen, where protein disulfide isomerase (PDI) was found to assist protein folding. Recombinant TMX showed PDI-like activity to refold scrambled RNase. These results indicate the possibility that TMX can modify certain molecules with its oxidoreductase activity and be involved in the redox regulation in the ER.  相似文献   

4.
5.
In the endoplasmic reticulum (ER), a variety of oxidoreductases classified in the thioredoxin superfamily have been found to catalyze the formation and rearrangement of disulfide bonds. However, the precise function and specificity of the individual thioredoxin family proteins remain to be elucidated. Here, we characterize a transmembrane thioredoxin-related protein (TMX), a membrane-bound oxidoreductase in the ER. TMX exists in a predominantly reduced form and associates with the molecular chaperon calnexin, which can mediate substrate binding. To determine the target molecules for TMX, we apply a substrate-trapping approach based on the reaction mechanism of thiol-disulfide exchange, identifying major histocompatibility complex (MHC) class I heavy chain (HC) as a candidate substrate. Unlike the classical ER oxidoreductases such as protein disulfide isomerase and ERp57, TMX seems not to be essential for normal assembly of MHC class I molecules. However, we show that TMX–class I HC interaction is enhanced during tunicamycin-induced ER stress, and TMX prevents the ER-to-cytosol retrotranslocation of misfolded class I HC targeted for proteasomal degradation. These results suggest a specific role for TMX and its mechanism of action in redox-based ER quality control.  相似文献   

6.
Reduction of non-native protein disulphides in the periplasm of Escherichia coli is catalysed by three enzymes, DsbC, DsbG and DsbE, each of which harbours a catalytic Cys-X-X-Cys dithiol motif. This dithiol motif requires continuous reduction for activity. Genetic evidence suggests that the source of periplasmic reducing power resides within the cytoplasm, provided by thioredoxin (trxA) and thioredoxin reductase (trxB). Cytoplasmic electrons donated by thioredoxin are thought to be transferred into the periplasm via the DsbD membrane protein. To understand the molecular nature of electron transfer, we have analysed the membrane topology of DsbD. DsbD is exported by an N-terminal signal peptide. The N- and C-terminal domains are positioned in the periplasmic space, connected by eight transmembrane segments. Electron transfer was shown to require five cysteine sulphydryl of DsbD. Trans complementation of mutant DsbD molecules revealed intermolecular electron transfer. We discuss a model whereby the membrane-embedded disulphides of DsbD accept electrons from cytoplasmic thioredoxin and transfer them to the C-terminal periplasmic dithiol motif of DsbD.  相似文献   

7.
Mitochondrial thioredoxin reductase was purified from bovine adrenal cortex. The enzyme is a first protein component in the mitochondrial thioredoxin-dependent peroxide reductase system. The purified reductase exhibited an apparent molecular mass of 56 kDa on SDS/PAGE, whereas the native protein was about 100 kDa, suggesting a homodimeric structure. It catalysed NADPH-dependent reduction of 5, 5'dithiobis(2-nitrobenzoic acid) and thioredoxins from various origins but not glutathione, oxidized dithiothreitol, DL-alpha-lipoic acid, or insulin. Amino acid and nucleotide sequence analyses revealed that it had a presequence composed of 21 amino acids which had features characteristic of a mitochondrial targeting signal. The amino acid sequence of the mature protein was similar to that of bovine cytosolic thioredoxin reductase (57%) and of human glutathione reductase (34%) and less similar to that of Escherichia coli (19%) or yeast (17%) enzymes. Human and bovine cytosolic thioredoxin reductase were recently identified to contain selenocysteine (Sec) as one of their amino acid constituents. We also identified Sec in the C-terminal region of mitochondrial (mt)-thioredoxin reductase by means of MS and amino acid sequence analyses of the C-terminal fragment. The four-amino acid motif, Gly-Cys-Sec-Gly, which is conserved among all Sec-containing thioredoxin reductases, probably functions as the third redox centre of the enzyme, as the mitochondrial reductase was inhibited by 1-chloro-2,4-dinitrobenzene, which was reported to modify Sec and Cys covalently. It is known that mammalian thioredoxin reductase is different from bacterial or yeast enzyme in, for example, their subunit molecular masses and domain structures. These two different types of enzymes with similar activity are suggested to have evolved convergently. Our data clearly show that mitochondria, which might have originated from symbiotic prokaryotes, contain thioredoxin reductase similar to the cytosolic enzyme and different from the bacterial one.  相似文献   

8.
Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family. Here, we show that the endoplasmic reticulum-luminal region of TMX3 contains three thioredoxin-like domains, an N-terminal redox-active domain (named a) followed by two enzymatically inactive domains (b and b'). Using the recombinantly expressed TMX3 domain constructs a, ab, and abb', we compared structural stability and enzymatic properties. By structural and biophysical methods, we demonstrate that the reduced a domain has features typical of a globular folded domain that is, however, greatly destabilized upon oxidization. Importantly, interdomain stabilization by the b domain renders the a domain more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb', the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains.  相似文献   

9.
An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H2O2. These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.  相似文献   

10.
The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.  相似文献   

11.
Thioredoxin glutathione reductase (TGR) is a member of the mammalian thioredoxin reductase family that has a monothiol glutaredoxin (Grx) domain attached to the thioredoxin reductase module. Here, we report a structure of the Grx domain of mouse TGR, determined through high resolution NMR spectroscopy to the final backbone RMSD value of 0.48±0.10 Å. The structure represents a sandwich-like molecule composed of a four stranded β-sheet flanked by five α–helixes, with the CxxS active motif located on the catalytic loop. We structurally characterized the glutathione-binding site in the protein and describe sequence and structural relationships of the domain with glutaredoxins. The structure illuminates a key functional center that evolved in mammalian TGRs to act in thiol-disulfide reactions. Our study allows us to hypothesize that Cys105 might be functionally relevant for TGR catalysis. In addition, the data suggest that the N-terminus of Grx acts as a possible regulatory signal also protecting the protein active site from unwanted interactions in cellular cytosol.  相似文献   

12.
Kim JH  Kim SJ  Jeong DG  Son JH  Ryu SE 《FEBS letters》2003,543(1-3):164-169
The Escherichia coli transmembrane protein DsbD transfers electrons from the cytoplasm to the periplasm through a cascade of thiol-disulfide exchange reactions. In this process, the C-terminal periplasmic domain of DsbD (DsbDgamma) shuttles the reducing potential from the membrane domain (DsbDbeta) to the N-terminal periplasmic domain (DsbDalpha). The crystal structure of DsbDgamma determined at 1.9 A resolution reveals that the domain has a thioredoxin fold with an extended N-terminal stretch. In comparison to thioredoxin, the DsbDgamma structure exhibits the stabilized active site conformation and the extended active site alpha2 helix that explain the domain's substrate specificity and the redox potential shift, respectively. The hypothetical model of the DsbDgamma:DsbDalpha complex based on the DsbDgamma structure and previous structural studies indicates that the conserved hydrophobic residue in the C-X-X-C motif of DsbDgamma may be important in the specific recognition of DsbDalpha.  相似文献   

13.
Sarin R  Sharma YD 《Gene》2006,376(1):107-115
Metal corroding sulfate reducing bacteria have been poorly characterized at molecular level due to difficulties pertaining to isolation and handling of anaerobes. We report here for the first time the presence and characterization of thioredoxin 2 in an obligate anaerobic dissimilatory sulfate reducing bacterium Desulfovibrio desulfuricans. In silico analysis of the D. desulfuricans genome revealed the presence of thioredoxin 1 (dstrx1), thioredoxin 2 (dstrx2) and thioredoxin reductase (dstrxR) genes. These genes were found to be actively expressed by the bacteria under the anaerobic growth conditions. We have overexpressed the anaerobic thioredoxin genes in E. coli to produce functionally active recombinant proteins. Recombinant DsTrxR recognized both DsTrx1 and DsTrx2 as its substrate. Mutation studies revealed that the activity of DsTrx2 can be completely abolished with a single amino acid mutation (C69A) in the signature motif 'WCGPC'. Furthermore, the N-terminal domain of DsTrx2 containing two extra CXXC motifs was found to have a negative regulation on its biochemical activity. In conclusion, we have shown the presence of thioredoxin 2 for the first time in an obligate anaerobe which in this anaerobe may be required for its survival under either oxidative stress conditions or metal ion hemostasis.  相似文献   

14.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

15.
Previous reports have suggested that protein disulfide isomerases (PDIs) have transglutaminase (TGase) activity. The structural basis of this reaction has not been revealed. We demonstrate here that Caenorhabditis elegans PDI-3 can function as a Ca(2+)-dependent TGase in assays based on modification of protein- and peptide-bound glutamine residues. By site-directed mutagenesis the second cysteine residue of the -CysGlyHisCys- motif in the thioredoxin domain of the enzyme protein was found to be the active site of the transamidation reaction and chemical modification of histidine in their motif blocked TGase activity.  相似文献   

16.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin system in S. cerevisiae. The TRX3 gene codes for a 14-kDa protein containing the characteristic thioredoxin active site (WCGPC). The TRR2 gene codes for a protein of 37 kDa with the active-site motif (CAVC) present in prokaryotic thioredoxin reductases and binding sites for NADPH and FAD. We cloned and expressed both proteins in Escherichia coli, and the recombinant Trx3 and Trr2 proteins were active in the insulin reduction assay. Trx3 and Trr2 proteins have N-terminal domain extensions with characteristics of signals for import into mitochondria. By immunoblotting analysis of Saccharomyces subcellular fractions, we provide evidence that these proteins are located in mitochondria. We have also constructed S. cerevisiae strains null in Trx3 and Trr2 proteins and tested them for sensitivity to hydrogen peroxide. The Deltatrr2 mutant was more sensitive to H2O2, whereas the Deltatrx3 mutant was as sensitive as the wild type. These results suggest an important role of the mitochondrial thioredoxin reductase in protection against oxidative stress in S. cerevisiae.  相似文献   

17.
The ERV/ALR sulfhydryl oxidase domain is a versatile module adapted for catalysis of disulfide bond formation in various organelles and biological settings. Its four-helix bundle structure juxtaposes a Cys-X-X-Cys dithiol/disulfide motif with a bound flavin adenine dinucleotide (FAD) cofactor, enabling transfer of electrons from thiol substrates to non-thiol electron acceptors. ERV/ALR family members contain an additional di-cysteine motif outside the four-helix-bundle core. Although the location and context of this "shuttle" disulfide differs among family members, it is proposed to perform the same basic function of mediating electron transfer from substrate to the enzyme active site. We have determined by X-ray crystallography the structure of AtErv1, an ERV/ALR enzyme that contains a Cys-X4-Cys shuttle disulfide and oxidizes thioredoxin in vitro, and compared it to ScErv2, which has a Cys-X-Cys shuttle and does not oxidize thioredoxin at an appreciable rate. The AtErv1 shuttle disulfide is in a region of the structure that is disordered and thus apparently mobile and exposed. This feature may facilitate access of protein substrates to the shuttle disulfide. To test whether the shuttle disulfide region is modular and can confer on other enzymes oxidase activity toward new substrates, we generated chimeric enzyme variants combining shuttle disulfide and core elements from AtErv1 and ScErv2 and monitored oxidation of thioredoxin by the chimeras. We found that the AtErv1 shuttle disulfide region could indeed confer thioredoxin oxidase activity on the ScErv2 core. Remarkably, various chimeras containing the ScErv2 Cys-X-Cys shuttle disulfide were found to function efficiently as well. Since neither the ScErv2 core nor the Cys-X-Cys motif is therefore incapable of participating in oxidation of thioredoxin, we conclude that wild-type ScErv2 has evolved to repress activity on substrates of this type, perhaps in favor of a different, as yet unknown, substrate.  相似文献   

18.
BACKGROUND: ERp29 is a ubiquitously expressed rat endoplasmic reticulum (ER) protein conserved in mammalian species. Fold predictions suggest the presence of a thioredoxin-like domain homologous to the a domain of human protein disulfide isomerase (PDI) and a helical domain similar to the C-terminal domain of P5-like PDIs. As ERp29 lacks the double-cysteine motif essential for PDI redox activity, it is suggested to play a role in protein maturation and/or secretion related to the chaperone function of PDI. ERp29 self-associates into 51 kDa dimers and also higher oligomers. RESULTS: 3D structures of the N- and C-terminal domains determined by NMR spectroscopy confirmed the thioredoxin fold for the N-terminal domain and yielded a novel all-helical fold for the C-terminal domain. Studies of the full-length protein revealed a short, flexible linker between the two domains, homodimerization by the N-terminal domain, and the presence of interaction sites for the formation of higher molecular weight oligomers. A gadolinium-based relaxation agent is shown to present a sensitive tool for the identification of macromolecular interfaces by NMR. CONCLUSIONS: ERp29 is the first eukaryotic PDI-related protein for which the structures of all domains have been determined. Furthermore, an experimental model of the full-length protein and its association states was established. It is the first example of a protein where the thioredoxin fold was found to act as a specific homodimerization module, without covalent linkages or supporting interactions by further domains. A homodimerization module similar as in ERp29 may also be present in homodimeric human PDI.  相似文献   

19.
Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes.  相似文献   

20.
A cDNA that encodes protein disulfide isomerase was isolated from Bombyx mori (bPDI), in which an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active sites of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal. The bPDI protein shared less than 55% of the amino acid sequence homology with other reported PDIs. bPDI is most genetically similar to the D. melanogaster PDI. The most serious evolutional diversity was observed between the metazoa and nematoda through PDI evolutional processing. Although bPDI shows a relatively low amino acid homology with other PDIs, in which both sites of the two thioredoxin active sites and the endoplasmic reticulum (ER) retention signal are completely conserved, it was successfully recognized by anti-rat PDI antibodies. This suggests that bPDI may have the activity of a protein isomerase and a chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号