首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes the literature data as well as experimental results obtained at our Institute over a period of 50 years on the substrate specificity of cholinesterases–acetylcholine acetylhydrolases (EC 3.1.1.7) and acylcholine acylhydrolases (EC 3.1.1.8). The parameters of enzymatic hydrolysis of oxo- and thiocholine and β-methylcholine esters in different organs and tissues were analyzed in 66 animal species including 22 chordate, 20 insect, 1 mite, 17 mollusk, 4 nematode, and 2 flatworm species. Our substrate specificity studies and extensive data on the inhibitory specificity obtained using irreversible organophosphorous inhibitors and reversible effectors unequivocally indicate that the cholinesterase family is characterized by a clear-cut species and tissue specificity.  相似文献   

2.
Salts of pyrilium, thiopyrilium and selenopyrilium derivatives at pH 7.5 and temperature of 25 degrees C are studied for their effect on the catalytic activity of acetyl cholinesterase (EC 3.1.1.7) of human blood erythrocytes and butyryl cholinesterase (EC 3.1.1.8) of horse blood serum which is measured by the method of potentiometric titration. All enumerated salts are established to be strong reversible inhibitors of mixed-type cholinesterases, that is testified by small values of the inhibitory constants: competitive Ki, noncompetitive K'i and generalized K epsilon. Pyrilium and selenopyrilium salts inhibit acetyl cholinesterase of human blood erythrocytes to a higher extent than butyryl cholinesterase of horse blood serum, and thiopyrilium salts inhibit the latter to the highest extent. By the value of the inhibitory effect on acetyl cholinesterase of human blood erythrocytes thiopyrilium salts exceed the analogous pyrilium salts, whereas in experiments with butyl cholinesterase of horse blood serum there is an opposite dependence.  相似文献   

3.
Immunochemistry of mammalian cholinesterases   总被引:1,自引:0,他引:1  
Advances in the study of cholinesterase biology have been facilitated by the development of polyclonal and monoclonal antibodies to acetylcholinesterase (AChE) (EC 3.1.1.7) and butyrylcholinesterase (BuChE) (EC 3.1.1.8) in several laboratories. Our work has focused on murine monoclonal antibodies to the mammalian enzymes. Two dozen antibodies are now in hand, with primary specificity for the AChE of human red blood cells, rabbit brain, and rat brain, and for the BuChE of human plasma. These antibodies exhibit a restricted but useful range of affinities for other mammalian cholinesterases of corresponding types. Several applications are described, including an analysis of BuChE phylogeny within the higher primates, an immunodisplacement assay of AChE in normal human red blood cells and cells from patients with paroxysmal nocturnal hemoglobinuria, a study of immunochemical differences between membrane-associated and soluble AChE of rabbit brain, and initial work on the immunofluorescence cytochemistry of the rat brain.  相似文献   

4.
Two large-scale methods based primarily on the use of procainamide-Sepharose gels were developed for the purification of horse and human serum non-specific cholinesterases. With method I, the procainamide-Sepharose 4B gel was used in the first step to handle large volumes of serum. With method II, the procainamide-Sepharose 4B gel was used in the final step to obtain pure enzyme. Although both methods gave electrophoretically pure cholinesterase preparations in good yields, they were significantly more efficient at purifying the horse enzyme than the human enzyme. To study this problem, the relative binding of human and horse cholinesterases to procainamide-, methylacridinium (MAC)-, m-trimethylammoniophenyl (m-PTA)- and p-trimethylammoniophenyl (p-PTA)-Sepharose 4B gels were measured, by using two approaches. In one, binding was measured by a procedure involving equilibration of pure cholinesterase in a small volume of diluted gel slurry (4%, v/v). A partially purified preparation of Electrophorus acetylcholinesterase was included. Pure human cholinesterase bound consistently more tightly to each of the gels than did horse cholinesterase, and the acetylcholinesterase appeared to bind the gels 10-100 times more tightly than did the non-specific cholinesterases. The order of binding for the cholinesterases, beginning with the tightest, was: procainamide-Sepharose 4B, MAC-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. For the acetylcholinesterase the order was: MAC-Sepharose 4B, procainamide-Sepharose 4B, p-PTA-Sepharose 4B and m-PTA-Sepharose 4B. The second approach involved passing native sera or partially purified sera fractions through 1 ml test columns of each of the four affinity gels to determine their retention capacity for the cholinesterases. With these impure samples, the MAC-Sepharose 4B gels proved superior to the procainamide-Sepharose 4B gels at retaining human cholinesterase, but the opposite was true for the horse cholinesterase.  相似文献   

5.
Theoretical analysis is carried out and a reliable kinetic method for establishment of individuality of cholinesterases in studied preparation is proposed. For reliable conclusion about the presence of single cholinesterase or a mixture of cholinesterases in the biosample, it is necessary to determine values of the experimental kinetic constant of irreversible inhibition by several (three or more) inhibitors, using for evaluation of the catalytic activity of the biomaterial not less than three different substrates consecutively, for example, acetyl--methylcholine (substrate selective to typical acetylcholinesterase), butyrylcholine (substrate selective to typical butyrylcholinesterase), and acetylcholine (substrate hydrolyzed easily by cholinesterases of different types).  相似文献   

6.
1. Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate-NADP+ oxidoreductase, EC 1.1.1.49) from baker's yeast (Saccharomyces cerevisiae) was immobilized on CNBr-activated Sepharose 4B with retention of about 3% of enzyme activity. This uncharged preparation was stable for up to 4 months when stored in borate buffer, pH7.6, at 4 degrees C. 2. Stable enzyme preparations with negative or positive overall charge were made by adding valine or ethylenediamine to the CNBr-activated Sepharose 4B 30min after addition of the enzyme. 3. These three immobilized enzyme preparations retained 40-60% of their activity after 15 min at 50 degrees C. The soluble enzyme is inactivated by these conditions. 4. The soluble enzyme lost 45 and 100% of its activity on incubation for 3h at pH6 and 10 respectively. The three immobilized-enzyme preparations were completely stable over this entire pH range. 5. The pH optimum of the positively and negatively charged immobilized-enzyme preparations were about 8 and 9 respectively. The soluble enzyme and the uncharged immobilized enzyme had an optimum pH at about 8.5 6. Glucose 6-phosphate dehydrogenase immobilized on CNBr-activated Sephadex G-25 was unstable, as was enzyme attached to CNBr-activated Sepharose 4B to which glycine, asparitic acid, valine or ethylenediamine was added at the same time as the enzyme.  相似文献   

7.
Abstract: A single molecular from of soluble acetylcholinesterase was isolated from a variety of mammalian tissues by use of a novel affinity matrix. This matrix was synthesised by coupling the reversible cholinesterase inhibitor, edrophonium chloride, to epoxy-activated Sepharose. This simple synthesis produced a matrix which was exceptionally stable and had the novel property of selectively binding only one molecular form of acetylcholinesterase. Soluble proteins from a variety of mammalian tissues, including brain, adrenal glands, cerebrospinal fluid, and blood, were separated by centrifugation. These contained combinations of acetylcholinesterase (EC 3.1.1.7) and cholinesterase (EC 3.1.1.8), varying from a single form of acetylcholinesterase to multiple forms of both acetylcholinesterase and cholinesterase. The edrophonium-Sepharose matrix bound only one form of acetylcholinesterase. This form of acetylcholinesterase corresponded in molecular size and electrophoretic mobility to the unique form found in cerebrospinal fluid, i.e. secretory acetylcholinesterase. Cholinesterase was not bound to the matrix.  相似文献   

8.
It is established that derivatives of polymethylene bistrimethylammonium (CH3)3N+(CH2)nN+(CH3)3 (n = 4-10) are reversible competitive and mixed action inhibitors with respect to acetylcholinesterase of human erythrocytes, butyryl cholinesterase of horse blood serum, cholinesterase of frog brain and Todarodes pacificus optical ganglion. In case of mammals and frog cholinesterase the inhibitors efficiency rises with n, but the activity of the Todarodes pacificus cholinesterase less sensitive of the inhibitors is characterized by a "step" dependence on the length of the polymethylene chain of the inhibitor molecule. Studies in sensitivity of cholinesterases to this type of inhibitors revealed differences between enzymes of the same type in different animals.  相似文献   

9.
Thermophilic catechol 2,3-dioxygenase (EC 1.13.11.2) from Bacillus stearothermophilus has been immobilized on highly activated glyoxyl agarose beads. The enzyme could be fully immobilized at 4 degrees C and pH 10.05 with a high retention of activity (around 80%). Enzyme immobilized under these conditions showed little increase in thermostability compared with the soluble enzyme, but further incubation of immobilized enzyme at 25 degrees C and pH 10.05 for 3 h before borohydride reduction resulted in conjugates exhibiting a 100-fold increase in stability (c.f. the free enzyme). The stability of catechol 2,3-dioxygenase immobilized under these conditions was essentially independent of protein concentration whereas free enzyme was rapidly inactivated at low protein concentrations. An apparent stabilization factor of over 700-fold was recorded in the comparison of free and immobilized catechol 2,3-dioxygenases at protein concentrations of 10 μg/ml. Immobilization increased the 'optimum temperature' for activity by 20 degrees C, retained activity at substrate concentrations where the soluble enzyme was fully inactivated and enhanced the resistance to inactivation during catalysis. These results suggest that the immobilization of the enzyme under controlled conditions with the generation of multiple covalent links between the enzyme and matrix both stabilized the quaternary structure of the protein and increased the rigidity of the subunit structures.  相似文献   

10.
Amphiphile dependency, solubility in aqueous solutions, and sensitivity to proteolysis of acetylcholinesterase (AChE) and nonspecific cholinesterase (nsChE) in the rat superior cervical ganglion were studied and compared to properties of soluble plasma cholinesterases. Ganglion AChE shows strong amphiphile dependency: an amphyphilic substance must be present in the homogenizing medium in order to obtain maximal apparent enzyme activity. Apparent activity of AChE solubilized in Ringer's solution was also increased after subsequent addition of a detergent. The 4 S molecular form, predominant in this extract (corresponding to the fastest electrophoretic band), is very sensitive to papain proteolysis but can be protected by a detergent. This molecular form therefore carries an important hydrophobic domain and is probably membrane bound in situ. The 10 S form of ganglionic AChE, extracted in Ringer's solution, is probably a soluble enzyme since, like soluble plasma enzymes, it is not amphiphile dependent and is rather resistant to proteolysis. Ganglion nsChE is more water soluble, less amphiphile dependent and more protease resistant than AChE.  相似文献   

11.
The poorly known mechanism of inhibition of cholinesterases by inorganic mercury (HgCl2) has been studied with a view to using these enzymes as biomarkers or as biological components of biosensors to survey polluted areas. The inhibition of a variety of cholinesterases by HgCl2 was investigated by kinetic studies, X-ray crystallography, and dynamic light scattering. Our results show that when a free sensitive sulfhydryl group is present in the enzyme, as in Torpedo californica acetylcholinesterase, inhibition is irreversible and follows pseudo-first-order kinetics that are completed within 1 h in the micromolar range. When the free sulfhydryl group is not sensitive to mercury (Drosophila melanogaster acetylcholinesterase and human butyrylcholinesterase) or is otherwise absent (Electrophorus electricus acetylcholinesterase), then inhibition occurs in the millimolar range. Inhibition follows a slow binding model, with successive binding of two mercury ions to the enzyme surface. Binding of mercury ions has several consequences: reversible inhibition, enzyme denaturation, and protein aggregation, protecting the enzyme from denaturation. Mercury-induced inactivation of cholinesterases is thus a rather complex process. Our results indicate that among the various cholinesterases that we have studied, only Torpedo californica acetylcholinesterase is suitable for mercury detection using biosensors, and that a careful study of cholinesterase inhibition in a species is a prerequisite before using it as a biomarker to survey mercury in the environment.  相似文献   

12.
Introduction of the triple bond in the leaving group of the organophosphorus inhibitor molecule gives a sharp raise of the inhibitor activity but does not change principal characteristics of the cholinesterase inhibition mechanism. The reactivation experiments suggest that inactivation of cholinesterases by these compounds occurs due to phosphorylating of the serine hydroxyl by the corresponding phosphoric acid. A close similarity was shown between acetylenic and saturated organophosphorus inhibitors in altering ka upon change of pH and tetraalkylammonium ions action. It is demonstrated that S-alkynyl esters of thioacetic acid are slowly hydrolyzed by acetylcholinesterase and cholinesterase without irreversible inhibition of the enzymes.  相似文献   

13.
The three cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] components of Penicillium funiculosum have been immobilized on a soluble, high molecular weight polymer, poly(vinyl alcohol), using carbodiimide. The immobilized enzyme retained over 90% of cellulase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], and exo-β-d-glucanase [1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91] and β-d-glucosidase [β-d-glucoside glucohydrolase, EC 3.2.1.21] activities. The bound enzyme catalysed the hydrolysis of alkali-treated bagasse with a greater efficiency than the free cellulase. The potential for reuse of the immobilized system was studied using membrane filters and the system was found to be active for three cycles.  相似文献   

14.
Summarized are results of the 40-year studies of the Russian biochemists on the comparative-enzymological characteristics of cholinesterase of optic ganglia of the Pacific squid Todarodes pacificus. The review includes comparative evaluation of the cholinesterase activity of various hydrobiont tissues, the proof of enzymatic homogeneity of tissues of the Pacific squid optic ganglia, data on substrate specificity with study of 18 ester substrates as well as detailed study of inhibitory specificity (61 irreversible inhibitors and 49 reversible onium inhibitors). Peculiarity of properties of this enzyme as compared with vertebrate and invertebrate cholinesterases is shown.  相似文献   

15.
We report the existence, in Torpedo marmorata tissues, of a cholinesterase species (sensitive to 10(-5) M eserine) that differs from acetylcholinesterase (AChE, EC 3.1.1.7) in several respects: (a) The enzyme hydrolyzes butyrylthiocholine (BuSCh) at about 30% of the rate at which it hydrolyzes acetylthiocholine (AcSCh), whereas Torpedo AChE does not show any activity on BuSCh. (b) It is not inhibited by 10(-5) M BW 284C51, but rapidly inactivated by 10(-8) M diisopropylfluorophosphonate. (c) It does not exhibit inhibition by excess substrate up to 5 X 10(-3) M AcSCh. (d) It does not cross-react with anti-AChE antibodies raised against purified Torpedo AChE. This enzyme is obviously homologous to the "nonspecific" or pseudocholinesterase (pseudo-ChE, EC 3.1.1.8) that exists in other species, although it is closer to "true" AChE than classic pseudo-ChE in several respects. Thus, it shows the highest Vmax with acetyl-, and not propionyl- or butyrylthiocholine, and it is not specifically sensitive to ethopropazine. Pseudo-ChE is apparently absent from the electric organs, but represents the only cholinesterase species in the heart ventricle. Pseudo-ChE and AChE coexist in the spinal cord and in blood plasma, where they contribute to AcSCh hydrolysis in comparable proportions. Pseudo-ChE exists in several molecular forms, including collagen-tailed forms, which can be considered as homologous to those of AChE. In the heart the major component of pseudo-ChE appears to be a soluble monomeric form (G1). This form is inactivated by Triton X-100 within days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effect of streptozotocin-induced diabetes on cholinesterases activities was studied in the retina and, for comparison, in other nervous and nonnervous tissues. Streptozotocin diabetes did not affect acetylcholinesterase activity in the retina but increased its activity in the cerebral cortex (100%) and in serum (55%), and decreased it by 30-40% in erythrocytes. The butyrylcholinesterase activity was decreased by 30-50% in retina and hippocampus and to a lesser extent in retinal pigment epithelium from rats treated with streptozotocin for one week. Changes observed in cholinesterase activities were not correlated with the fasting blood glucose concentration. The results suggest that diabetes might influence a specific subset of cells and isoforms of cholinesterases. This, in turn, could lead to alterations associated with diabetes complications.  相似文献   

17.
Commercial preparations of acetylcholinesterase (EC 3.1.1.7) and of cholinesterase (EC 3.1.1.8) were characterized by organophosphate inhibition. Cholinesterase activities were inhibited by varying organophosphate concentration and time of inhibition. Bimolecular rate constants were determined by plotting log activity vs inhibitor concentration or inhibition time. Inhibition of acetylcholinesterase from bovine erythrocytes by diethyl p-nitrophenyl phosphate (Paraoxon), diisopropylphosphorofluoridate (DFP), and N,N′-diisopropylphosphorodiamidic fluoride (Mipafox) in semilogarithmic plots showed a linear decay of activity. Inhibition of acetylcholinesterase from electric eel (Electrophorus electricus) and of cholinesterases from horse serum and from human serum did not show linear characteristics, indicating the presence of more than one single enzyme in these preparations. The corresponding inhibition curves were resolved by subtraction of exponential functions. In each case two different activity components were identified and characterized in respect to partial activity, substrate specificity, and reactivity with organophosphorous compounds. The suitability of the method for application on crude homogenates is discussed.  相似文献   

18.
The technique of differential scanning calorimetry (DSC) has been applied to the study of temperature-induced irreversible denturation and thus to the heat stability of soluble and Sepharose-bound liver alcohol dehydrogenase (LADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) in the presence of various coenzymes or coenzyme fragments. The transition temperature (Ttr) of 82.5 degrees C obtained for soluble LADH was increased by 12.5 degrees C in the presence of a saturating concentration of NACH. In the presence of NAD+, Ttr increased by 8.5 degrees C, whereas ADP-ribose and AMP caused an increase in Ttr of only 2 and 1 degree C, respectively. The Ttr of 85.5 degrees C obtained for Sepharose-bound LADH was increased by about 12 degrees C after the addition of free NADH. However, when the enzyme was immobilized simultaneously with a NADH analogue (which also binds to the matrix), a broad endotherm with a Ttr of 91.5 degrees C was obtained, indicating the presence of immobilized enzyme molecules both with, and without, associated NADH. Corresponding increases in heat stability were observed for LDH in solution in the presence of NADH, NAD+, and AMP, leading to increases in Ttr from 72 to 79.5 and 74 and 73 degrees C, respectively. The addition of pyruvate and NAD+ to the enzyme to form an abortive ternary complex led to the same stabilization as that observed with NADH, attendant with a large increase in the enthalpy of transition, deltaHtr. In these studies the technique of DSC was utilized because it is applicable both to soluble and immobilized enzymes and (1) provides rapid information about Ttr and thus thermal stability of enzymes, (2) different energetic states of an enzyme molecule can be identified, and (3) an overall picture of the thermal process is rapidly obtained.  相似文献   

19.
Firefly (Luciola mingrelica) luciferase [Photinus luciferin 4-monooxygenase (ATP-hydrolysing); Photinus luciferin: oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing), EC 1.13.12.7] has been immobilized on albumin and polyacrylamide gel, on AH-, CH- and CNBr-Sepharose 4B as well as on Ultragel, Ultradex and cellophane film activated by cyanogen bromide. Only immobilization on cyanogen bromide-activated polysaccharide carriers resulted in highly active immobilized luciferase. Kinetic properties of immobilized luciferase hardly differed from those of the soluble enzyme. The inactivation rate constants of soluble and immobilized luciferase were measured at pH 5.5–9.0 and 25°C as well as at pH 7.8 and 20–40°C. The ΔH and ΔS values for inactivation of soluble and immobilized luciferases were obtained. A 1000-fold stabilization effect was noted for the luciferase immobilized on CNBr-Sepharose 4B at pH 7.5 and 25°C. A stabilization mechanism for the immobilized luciferase is discussed.  相似文献   

20.
The embryonic development of total specific activities as well as of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and of butyrylcholinesterase (BChE, EC 3.1.1.8) have been studied in the chick brain. A comparison of the development in different brain parts shows that cholinesterases first develop in diencephalon, then in tectum and telencephalon; cholinesterase development in retina is delayed by about 2-3 days; and the development in rhombencephalon [not studied until embryonic day 6 (E6)] and cerebellum is last. Both enzymes show complex and independent developmental patterns. During the early period (E3-E7) first BChE expresses high specific activities that decline rapidly, but in contrast AChE increases more or less constantly with a short temporal delay. Thereafter the developmental courses approach a late phase (E14-E20), during which AChE reaches very high specific activities and BChE follows at much lower but about parallel levels. By extraction of tissues from brain and retina in high salt plus 1% Triton X-100, we find that both cholinesterases are present in two major molecular forms, AChE sedimenting at 5.9S and 11.6S (corresponding to G2 and G4 globular forms) and BChE at 2.9S and 10.3S (G1 and G4, globular). During development there is a continuous increase of G4 over G2 AChE, the G4 form reaching 80% in brain but only 30% in retina. The proportion of G1 BChE in brain remains almost constant at 55%, but in retina there is a drastic shift from 65% G1 before E5 to 70% G4 form at E7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号