首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

2.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

3.
Previous studies have shown that induction of immune tolerance by mesenchymal stem cells (MSCs) is partially mediated via monocytes or dendritic cells (DCs). The purpose of this study was to determine the role of CD11c+ cells in MSC-induced effects on ischemia/reperfusion injury (IRI). IRI was induced in wildtype (WT) mice and CD11c+-depleted mice following pretreatment with or without MSCs. In the in-vitro experiments, the MSC-treated CD11c+ cells acquired regulatory phenotype with increased intracellular IL-10 production. Although splenocytes cocultured with MSCs showed reduced T cell proliferation and expansion of CD4+FoxP3+ regulatory T cells (Tregs), depletion of CD11c+ cells was associated with partial loss of MSCs effect on T cells. In in-vivo experiment, MSCs’ renoprotective effect was also associated with induction of more immature CD11c+ cells and increased FoxP3 expression in I/R kidneys. However all these effects induced by the MSCs were partially abrogated when CD11c+ cells were depleted in the CD11c+-DTR transgenic mice. In addition, the observation that adoptive transfer of WT CD11c+ cells partially restored the beneficial effect of the MSCs, while transferring IL-10 deficient CD11c+ cells did not, strongly suggest the important contribution of IL-10 producing CD11c+ cells in attenuating kidney injury by MSCs. Our results suggest that the CD11c+ cell-Tregs play critical role in mediating renoprotective effect of MSCs.  相似文献   

4.
Tissue homing of activated T cells is typically mediated through their specific integrin and chemokine receptor repertoire. Activation of human primary CD4(+) T cells in the presence of CD46 cross-linking induces the development of a distinct immunomodulatory T cell population characterized by high IL-10/granzyme B production. How these regulatory T cells (Tregs) migrate/home to specific tissue sites is not understood. In this study, we determined the adhesion protein and chemokine receptor expression pattern on human CD3/CD46-activated peripheral blood CD4(+) T cells. CD3/CD46-activated, but not CD3/CD28-activated, T cells up-regulate the integrin alpha(4)beta(7). The interaction of alpha(4)beta(7) with its ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) mediates homing or retention of T cells to the intestine. CD3/CD46-activated Tregs adhere to/roll on MAdCAM-1-expressing HeLa cells, similar to T cells isolated from the human lamina propria (LP). This interaction is inhibited by silencing MAdCAM-1 expression in HeLa cells or by the addition of blocking Abs to beta(7). CD46 activation of T cells also induced the expression of the surface-bound cytokine LIGHT and the chemokine receptor CCR9, both marker constitutively expressed by gut LP-resident T cells. In addition, we found that approximately 10% of the CD4(+) T lymphocytes isolated from the LP of patients undergoing bariatric surgery contain T cells that spontaneously secrete a cytokine pattern consistent with that from CD46-activated T cells. These data suggest that CD46-induced Tregs might play a role in intestinal immune homeostasis where they could dampen unwanted effector T cell responses through local IL-10/granzyme B production.  相似文献   

5.
Natural CD25(+)CD4(+) regulatory T cells (Treg) are essential for self-tolerance and for the control of T cell-mediated immune pathologies. However, the identification of Tregs in an ongoing immune response or in inflamed tissues remains elusive. Our experiments indicate that TIRC7, T cell immune response cDNA 7, a novel membrane molecule involved in the regulation of T lymphocyte activation, identifies two Treg subsets (CD25(low)TIRC7(+) and CD25(high)TIRC7(-)) that are characterized by the expression of Foxp3 and a suppressive activity in vitro and in vivo. We also showed that the CD25(low)TIRC7(+) subset represents IL-10-secreting Tregs in steady state, which is accumulated intratumorally in a tumor-bearing mice model. Blockade of the effect of IL-10 reversed the suppression imposed by the CD25(low)TIRC7(+) subset. Interestingly, these IL-10-secreting cells derived from the CD25(high)TIRC7(-) subset, both in vitro and in vivo, in response to tumoral Ags. Our present results strongly support the notion that, in the pool of natural Tregs, some cells can recognize foreign Ags and that this recognition is an essential step in their expansion and suppressive activity in vivo.  相似文献   

6.
Recent data have demonstrated that treatment with alphabeta-TCR(+)CD3(+)CD4(-)CD8(-)NK1.1(-) double negative (DN) regulatory T cells (Tregs) inhibits autoimmune diabetes and enhances allotransplant and xenotransplant survival in an Ag-specific fashion. However, the mechanisms whereby DN Tregs suppress Ag-specific immune responses remain largely unknown. In this study, we demonstrate that murine DN Tregs acquire alloantigen in vivo via trogocytosis and express it on their cell surface. Trogocytosis requires specific interaction of MHC-peptide on APCs and Ag-specific TCR on DN Tregs, as blocking this interaction prevents DN Treg-mediated trogocytosis. Acquisition of alloantigen by DN Tregs was required for their ability to kill syngeneic CD8(+) T cells. Importantly, DN Tregs that had acquired alloantigen were cytotoxic toward Ag-specific, but not Ag-nonspecific, syngeneic CD8(+) T cells. These data provide new insight into how Tregs mediate Ag-specific T cell suppression and may enhance our ability to use DN Tregs as a therapy for transplant rejection and autoimmune diseases.  相似文献   

7.
The absence of regulatory T cells (Tregs) results in significant immune dysregulation that includes autoimmunity. The mechanism(s) by which Tregs suppress autoimmunity remains unclear. We have shown that B cell anergy, a major mechanism of B cell tolerance, is broken in the absence of Tregs. In this study, we identify a unique subpopulation of CD4(+) Th cells that are highly supportive of Ab production and promote loss of B cell anergy. Notably, this novel T cell subset was shown to express the germinal center Ag GL7 and message for the B cell survival factor BAFF, yet failed to express markers of the follicular Th cell lineage. We propose that the absence of Tregs results in the expansion of a unique nonfollicular Th subset of helper CD4(+) T cells that plays a pathogenic role in autoantibody production.  相似文献   

8.
Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases.  相似文献   

9.
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4 + and CD8 + T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8 + T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.  相似文献   

10.
Regulatory T cells (Tregs) are important for the attenuation of immune reactions. During viral CNS infections, however, an indiscriminate maintenance of CNS immune privilege through Treg-mediated negative regulation could prevent autoimmune sequelae but impair the control of viral replication. We analyzed in this study the impact of Tregs on the development of acute viral encephalomyelitis, T cell-mediated antiviral protection, and prevention of CNS autoimmunity following intranasal infection with the gliatropic mouse hepatitis virus strain A59. To assess the contribution of Tregs in vivo, we specifically depleted CD4(+)Foxp3(+) T cells in a diphtheria toxin-dependent manner. We found that depletion of Tregs had no impact on viral distribution and clearance and did not significantly alter virus-specific CD4(+) and CD8(+) T cell responses. However, Treg depletion led to a more severe CNS inflammation associated with neuronal damage. Dissection of the underlying immunopathological mechanisms revealed the elaborate Treg-dependent regulation of self-reactive CD4(+) T cell proliferation within the CNS-draining lymph node and downtuning of CXCR3 expression on T cells. Taken together, these results suggest that Tregs preserve CNS immune privilege through selective control of CNS-specific Th cells while keeping protective antiviral immunity fully operative.  相似文献   

11.
The important role of tumor-specific cytotoxic CD8+ T cells is well defined in the immune control of the tumors, but the role of effector CD4+ T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4+ T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4+ T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8+ T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4+ T cells and increases FV-specific CD4+ T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4+ T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4+ T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.  相似文献   

12.
Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment.  相似文献   

13.
Bacterial superantigens are potent T cell activators. In humans they cause toxic shock and scarlet fever, and they are implicated in Kawasaki's disease, autoimmunity, atopy, and sepsis. Their function remains unknown, but it may be to impair host immune responses increasing bacterial carriage and transmission. Regulatory (CD25(+)FOXP3(+)) T cells (Tregs) play a role in controlling inflammatory responses to infection. Approximately 2% of circulating T cells are naturally occurring Tregs (nTregs). Conventional Ag stimulation of naive FOXP3(-) T cells induces Ag-specific Tregs. Polyclonal T cell activation has been shown to produce non-Ag-specific Tregs. Because superantigens are unique among microbial virulence factors in their ability to trigger polyclonal T cell activation, we wanted to determine whether superantigen stimulation of T cells could induce non-Ag-specific Tregs. We assessed the effect of superantigen stimulation of human T cells on activation, regulatory markers, and cytokine production by flow cytometry and T cell suppression assays. Stimulation of PBMCs with staphylococcal exotoxin A and streptococcal pyrogenic exotoxins A and K/L resulted in dose-dependent FOXP3 expression. Characterization of this response for streptococcal pyrogenic exotoxin K/L confirmed its Vβ specificity, that CD25(+)FOXP3(+) cells arose from CD25(-) T cells and required APCs. These cells had increased CTLA-4 and CD127 expression, typical of the recently described activated converted Treg-like cells, and exhibited functional suppressor activity comparable to nTregs. Superantigen-stimulated CD25(+)FOXP3(+) T cells expressed IL-10 at lower superantigen concentrations than was required to trigger IFN-γ production. This study provides a mechanism for bacterial evasion of the immune response through the superantigen induction of Tregs.  相似文献   

14.
CD8 T cells stimulated with a suboptimal dose of anti-CD3 Abs (100 pg/ml) in the presence of IL-15 retain a naive phenotype with expression of CD45RA, CD28, CD27, and CCR7 but acquire new functions and differentiate into immunosuppressive T cells. CD8(+)CCR7(+) regulatory T cells (Tregs) express FOXP3 and prevent CD4 T cells from responding to TCR stimulation and entering the cell cycle. Naive CD4 T cells are more susceptible to inhibition than memory cells. The suppressive activity of CD8(+)CCR7(+) Tregs is not mediated by IL-10, TGF-β, CTLA-4, CCL4, or adenosine and relies on interference with very early steps of the TCR signaling cascade. Specifically, CD8(+)CCR7(+) Tregs prevent TCR-induced phosphorylation of ZAP70 and dampen the rise of intracellular calcium in CD4 T cells. The inducibility of CD8(+)CCR7(+) Tregs is correlated with the age of the individual with PBLs of donors older than 60 y yielding low numbers of FOXP3(low) CD8 Tregs. Loss of CD8(+)CCR7(+) Tregs in the elderly host may be of relevance in the aging immune system as immunosenescence is associated with a state of chronic smoldering inflammation.  相似文献   

15.
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.  相似文献   

16.
Regulatory CD25(+)CD4(+) T cells (Tregs) play an important role in the control of peripheral tolerance. In this study we demonstrate that human peripheral blood Tregs can be divided into two distinct populations based on the expression of CCR4. The majority ( approximately 75%) of freshly isolated Tregs express CCR4 and presumably represent memory-type Tregs. Interestingly, CCR4(-) Tregs require anti-CD3 Ab-mediated activation to acquire a regulatory activity, while CCR4(+) Tregs appear to be already primed to suppress the proliferation of CD8(+) T cells. CCR4 is also expressed on CD25(low)CD4(+) T cells (CCR4(+) non-Tregs) that mostly suppress Th1-type polarization without affecting T cell proliferation, presumably via the production of immunomodulatory cytokines like IL-10. In contrast, CCR4(+) Tregs express FasL to primarily regulate T cell proliferation via a contact-mediated process involving FasL/Fas signaling, a major regulatory pathway of T cell homeostasis. Finally, we also demonstrate that the depletion of CCR4(+) T cells leads to Th1-type polarization of CD4(+) T cells and augmentation of CD8(+) T cell responses to tumor Ags.  相似文献   

17.
CD8alphaalpha+CD4-TCRalphabeta+ T cells are a special lineage of T cells found predominantly within the intestine as intraepithelial lymphocytes and have been shown to be involved in the maintenance of immune homeostasis. Although these cells are independent of classical MHC class I (class Ia) molecules, their origin and function in peripheral lymphoid tissues are unknown. We have recently identified a novel subset of nonintestinal CD8alphaalpha+CD4-TCRalphabeta+ regulatory T cells (CD8alphaalpha Tregs) that recognize a TCR peptide from the conserved CDR2 region of the TCR Vbeta8.2-chain in the context of a class Ib molecule, Qa-1a, and control- activated Vbeta8.2+ T cells mediating experimental autoimmune encephalomyelitis. Using flow cytometry, spectratyping, and real-time PCR analysis of T cell clones and short-term lines, we have determined the TCR repertoire of the CD8alphaalpha regulatory T cells (Tregs) and found that they predominantly use the TCR Vbeta6 gene segment. In vivo injection of anti-TCR Vbeta6 mAb results in activation of the CD8alphaalpha Tregs, inhibition of the Th1-like pathogenic response to the immunizing Ag, and protection from experimental autoimmune encephalomyelitis. These data suggest that activation of the CD8alphaalpha Tregs present in peripheral lymphoid organs other than the gut can be exploited for the control of T cell-mediated autoimmune diseases.  相似文献   

18.
Hua J  Liang S  Ma X  Webb TJ  Potter JP  Li Z 《PloS one》2011,6(11):e27038

Background/Aims

Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells.

Methods

The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis.

Results

CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury.

Conclusions

NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.  相似文献   

19.
T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14(+) monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion.  相似文献   

20.
Naturally occurring regulatory T cells (Tregs) maintain self tolerance by dominant suppression of potentially self-reactive T cells in peripheral tissues. However, the activation requirements, the temporal aspects of the suppressive activity, and mode of action of human Tregs are subjects of controversy. In this study, we show that Tregs display significant variability in the suppressive activity ex vivo as 54% of healthy blood donors examined had fully suppressive Tregs spontaneously, whereas in the remaining donors, anti-CD3/CD2/CD28 stimulation was required for Treg suppressive activity. Furthermore, anti-CD3/CD2/CD28 stimulation for 6 h and subsequent fixation in paraformaldehyde rendered the Tregs fully suppressive in all donors. The fixation-resistant suppressive activity of Tregs operated in a contact-dependent manner that was not dependent on APCs, but could be fully obliterated by trypsin treatment, indicating that a cell surface protein is directly involved. By add-back of active, fixed Tregs at different time points after activation of responding T cells, the responder cells were susceptible to Treg-mediated immune suppression up to 24 h after stimulation. This defines a time window in which effector T cells are susceptible to Treg-mediated immune suppression. Lastly, we examined the effect of a set of signaling inhibitors that perturb effector T cell activation and found that none of the examined inhibitors affected Treg activation, indicating pathway redundancy or that Treg activation proceeds by signaling mechanisms distinct from those of effector T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号