首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
里氏木霉液体发酵产纤维素酶的研究   总被引:11,自引:0,他引:11  
在摇瓶试验基础上,采用里氏木霉(Trichoderma reesei)HC-415菌株进行5L自控罐产纤维素酶深层发酵试验。在通气量为 0.2—0.6vvm、搅拌速度为 400r/min、发酵液pH控制在5.8—6.1的条件下,发酵液的羧甲基纤维素(CMC)酶酶活最高为325.0mg糖/ml,滤纸糖酶(FPA)酶活最高达17.9mg糖/ml。发酵周期为108h。所得冻干纤维素酶粉CMC酶活最高3111IU/g,FPA最高135IU/g ,对发酵液得率平均6.7g/L。酶活总收率CMC酶活平均78.2%,FPA酶活平均73.5%。  相似文献   

2.
里氏木霉产纤维素酶研究进展   总被引:1,自引:0,他引:1  
木质纤维素类生物质被认为是重要且可持续的可再生能源,其主要组成部分是纤维素.纤维素酶是一种能将纤维素分解为葡萄糖的复合酶,能有效地降解木质纤维素生物质.真菌、细菌、放线菌、酵母等多种微生物均可以产生纤维素酶,其中里氏木霉具有完整的纤维素酶系结构,常作为生物技术领域中一个重要菌株,广泛应用于纤维素酶的商业生产.介绍了纤维...  相似文献   

3.
里氏木霉LW1固态发酵纤维素酶条件的研究   总被引:3,自引:0,他引:3  
采用里氏木霉LW 1(Trichoderma.Reesei)固体发酵生产纤维素酶,研究了秸杆粉和麦麸用量、料水比、起始pH值、发酵温度和发酵时间对该菌株产纤维素酶活力的影响。试验结果表明,里氏木霉LW 1的适宜发酵条件为:在秸秆∶麦麸=1∶1,料水比为1∶2的前提条件下,培养温度28℃,发酵周期为72h,起始pH5.5时产酶活力最高。浸出液中FPA酶活为119.417u/g干物质,CMC酶活为452.433u/g干物质。  相似文献   

4.
里氏木霉及其纤维素酶高产菌株的研究进展   总被引:2,自引:0,他引:2  
随着纤维素在能源、材料及化工等领域的广泛开发和应用,里氏木霉作为一种重要的产纤维素酶工业用菌种,越来越受到人们的广泛关注.为了提高其酶活,人们做了大量的工作,获得了一些相当好的突变株.对里氏木霉及其突变株的基因组进行研究,有助于人们理解其高效产酶的机制,同时也有利于构建其基因工程菌.介绍里氏木霉Trichoderma reesei 的背景及其部分高产纤维素酶突变株,并阐述近些年来对其突变株的基因组的研究进展.  相似文献   

5.
以里氏木霉及米根霉单菌固态发酵为对象,考察不同混合发酵形式对里氏木霉与米根霉混合固态发酵产纤维素酶的影响。结果表明:同时接种里氏木霉与米根霉,试验考察的两菌种接种量比1∶1(以孢子个数计)及5∶1条件下,两菌未产生明显协同产酶作用。米根霉延时(24 h)接种且菌种量比5∶1以及米根霉延时(48 h)接种且菌种量比1∶1,2种发酵形式产酶情况类似,滤纸酶活(FPA)及羧甲基纤维素酶(CMCase)酶活相对米根霉单菌发酵有所提高,而β-葡萄糖苷酶(β-GA)酶活相对里氏木霉单菌固态发酵结束时分别增加4.66及4.40倍,可以发现两菌产生一定协同作用。在米根霉延时(48 h)接种且菌种量比5∶1的发酵形式下,FPA及CMCase在发酵第7天酶活分别达到44.04 IU/g、627.14 U/g(以1 g干曲计),分别是里氏木霉固态单菌发酵产酶达到稳定期时酶活的1.36和1.63倍,两菌产生了有效的协同作用。  相似文献   

6.
纤维素酶的固体培养方法   总被引:6,自引:0,他引:6  
通过对菌株产酶能力的测定,确定了绿色木霉(Trichoderma viride)HWO7作为生产菌株。研究了培养基组成、培养条件和培养过程对产酶能力的影响,确定了固体培养生产纤维素酶的生产工艺。研究了纤维素酶的酶学特性。在确定工艺条件下,曲料的绝干酶活力(CMC-Na)达2605.1u/g,产品收率79.0%。  相似文献   

7.
里氏木霉Trichoderma reesei Rut-C30是目前研究最广泛的纤维素酶生产菌,选育高产纤维素酶的里氏木霉菌株有助于提高木质纤维素资源生物炼制的经济性。利用人工锌指蛋白文库转化T.reeseiRut-C30,筛选获得了两株高产纤维素酶的突变株T. reesei M1和M2,与出发菌株比较,突变株M1和M2滤纸酶活分别提高100%和53%,且M1突变株外泌蛋白量提高69%,M2内切纤维素酶活提高64%。实时定量PCR分析结果表明,与对照菌株相比,突变株M1和M2中主要纤维素酶基因转录均上调,但不同酶基因在两株菌中有不同的变化特征。此外,纤维素酶抑制转录因子基因ace1在两株突变株中都转录下调,而纤维素酶正调控转录因子基因xyr1仅在M1突变株中上调。以上结果表明,不同人工锌指蛋白对纤维素酶活性的影响具有多样性。对这些突变体中人工锌指蛋白靶基因进行深入分析,为进一步深入探究里氏木霉纤维素酶合成调控的机理,以及利用代谢工程选育更高效的产酶菌株提供了基础。  相似文献   

8.
研究C、N源对里氏木霉(Trichoderma reesei)生产纤维素酶的影响,采用单因素实验方法和中心复合方法对发酵培养基进行优化。单因素实验表明:黄豆饼粉、玉米芯、玉米浆对纤维素酶的影响显著。通过响应面优化,得到最优培养基C、N源的组成:黄豆饼粉32.21 g/L,玉米芯42.29 g/L,玉米浆4.45 g/L。优化条件下,摇瓶发酵7 d的比酶活达到(10.65±0.50)U/mL。  相似文献   

9.
通过PCR技术从里氏木霉基因组中扩增出基因xyn I,把基因与大肠杆菌质粒相连接,再把重组的质粒转入到感受态的Top10大肠杆菌中,待Top10大肠杆菌产生大量的重组质粒后,用中量制备质粒DNA方法把重组的质粒提取出来,再用双酶切方法检验重组质粒。实验结果显示,已经得到含有重组质粒的大肠杆菌菌落,完成了xyn I基因的克隆。  相似文献   

10.
通过(NH4)2SO4分级沉淀、HiPrep 26/10 Desalting凝胶色谱脱盐、Source 15 Q阴离子交换色谱技术,里氏木霉(Rut C-30)纤维素酶主要组分得以初步分开,再经过Source 15 S阳离子交换色谱、HiPrep Sephacryl S-100 HR凝胶过滤色谱、Superdex 75 PrepGrade凝胶过滤色谱进一步分离纯化,得到2个纯化的内切葡聚糖酶组分EGⅡ、EGⅠ和一个外切葡聚糖酶组分CBHⅠ;经过SDS-PAGE电泳鉴定为电泳纯,测得相对分子质量分别为5.22×104,5.62×104和6.90×104。EGⅡ的最适反应pH是5.6,最适反应温度为65℃;EGⅠ的最适反应pH是4.4,最适反应温度为55℃;以羧甲基纤维素(CMC)为底物时,EGⅠ、EGⅡ的米氏常数(Km)分别为2.20 mg/mL、3.38 mg/mL。CBHⅠ的最适反应pH是5.8,最适反应温度为60℃,以对硝基苯基-β-D-纤维二糖苷(PNPC)为底物时,米氏常数(Km)为0.12 mg/mL。  相似文献   

11.
里氏木霉纤维素酶产生条件的研究   总被引:10,自引:0,他引:10  
通过对培养基、水份含量、氮源、培养时间、培养基的起始PH以及培养温度的研究,测定TrichodermareeseiGAB纤维素酶的C1酶和Cx酶的酶活,找到了一个最佳的条件,即:稻草粉:花生壳=4:1,物料:水份=2:3,以NH4Cl、(NH42SO4、NH4H2PO4为氮源,起始pH为自然pH(约5.8),在28℃  相似文献   

12.
里氏木霉与黑曲霉混合发酵产纤维素酶及其水解特性   总被引:2,自引:0,他引:2  
研究了利用里氏木霉和黑曲霉混合培养产纤维素酶,以黑曲霉孢子悬浮液的不同活化浓度及不同的活化时间来寻找2个菌种发挥最大协同作用的结合点以及所产纤维素酶的水解特性。以里氏木霉单一培养和黑曲霉单一培养为参照进行对比研究。底物为农林废弃物之一的玉米秸秆,经过蒸气爆破预处理后,用作产酶C源。结果表明:黑曲霉孢子悬浮液活化浓度为10个/mL,活化时间为12 h时,滤纸酶比酶活最高,达3.32 U/mL,高于里氏木霉单一培养的2.25 U/mL,β-葡萄糖苷酶比酶活达1.32 U/mL,高于里氏木霉单一培养的0.57 U/mL。为进一步验证混合菌产纤维素酶的水解效果,利用混合菌产纤维酶的酶液及里氏木霉产纤维素酶的酶液进行酶水解实验,当酶用量为20 U/g绝干纤维素,底物质量浓度为100 g/L条件下水解48 h,混合菌所产酶液酶解得率达70.00%,高于里氏木霉所产酶液的酶解得率63.05%。实验表明里氏木霉与黑曲霉混合培养产酶是可行的,并优于单一菌种培养。  相似文献   

13.
高活力纤维素酶菌株康氏木霉B—7的选育与产酶条件的研究   总被引:14,自引:0,他引:14  
王景林  尹清强 《生物技术》1996,6(6):14-17,20
野生型康氏木霉854-B_2分别经物理化学诱变因子,TDP辐射器和空间微重力辐射等因素的多级处理,得到1株形态发生明显改变的变异株B—7,其固体培养物的纤维素酶各组分酶活力,如滤纸糖酶活力(FPA)为34u/g,羧甲基纤维素酶活力(CMC—ase)为29.0u/g,β-葡萄糖苷酶活力(β-Glase)为29.0u/g,与854-β2相比,分别提高5.9倍,7.6倍和4.2倍。其固体培养的最佳条件是:pH6.0,28~30℃,96小时,最适培养基成分为:青草粉:麸皮=7:3,1.5~2.0倍水和(NH4)2SO41.5~2.0%(均以固体料计)。  相似文献   

14.
利用红色荧光蛋白分析里氏木霉合成纤维素酶的机理   总被引:1,自引:0,他引:1  
以红色荧光蛋白作为报告蛋白研究了里氏木霉的纤维素酶合成机理。构建了里氏木霉的表达盒,通过该表达盒使红色荧光蛋白的基因整合到里氏木霉的基因组DNA上,并受纤维二糖水解酶基因启动子的调控,得到重组菌株T.reeseiTR2。在不同的条件下培养T.reeseiTR2,红色荧光蛋白的表达情况可以反映在不同条件下里氏木霉合成纤维素酶的情况。在诱导的情况下,红色荧光蛋白随时间变化的情况与培养液中纤维素酶活性的变化相似,培养至36h后可以观察到荧光,并且不断增强,到菌丝自溶时荧光减弱。另一方面,诱导后里氏木霉菌丝的各个部位均可以观察到荧光,而且分布均匀,表明菌丝的各个部位在纤维素酶合成过程中所起的作用相同。在非诱导的情况下,培养时间较长时也可以观察到较弱的荧光,表明在此条件下里氏木霉仍可以合成少量的纤维素酶,这一结果为解释纤维素诱导里氏木霉合成纤维素酶的机理提供了另一个试验依据。  相似文献   

15.
里氏木霉GXC木聚糖酶的研究   总被引:6,自引:0,他引:6  
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0-7.0和40℃以下相对稳定。Fe^2 和Mn^2 对木聚糖酶有较大的促进作用,Cu^2 、Fe^2 具有抑制作用。  相似文献   

16.
为了提高里氏木霉中天然纤维素酶的最佳活性pH,本实验从特异腐质霉,灰腐质霉的变种,枯草芽孢杆菌LH中分别筛选并克隆了其含有的中性纤维素酶基因,将其置于里氏木霉cbh1启动子的启动下,在里氏木霉中进行异源表达。改造株在pH 6.0下酶活提升16%,pH 7.0下活性保留75%以上,而此时原始菌酶活残留20%。本实验所得的产中性纤维素酶里氏木霉基因改造株,由于其良好的中酸性活性表现,在食品,纺织,纸浆和造纸行业应也有良好的使用潜力。  相似文献   

17.
18.
里氏木霉GXC木聚糖酶的研究   总被引:2,自引:0,他引:2  
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0(7.0和40℃以下相对稳定。Fe3+和Mn2+对木聚糖酶有较大的促进作用,Cu~2+、Fe~2+和Ca~2+ 具有抑制作用。  相似文献   

19.
里氏木霉重组t-PA的酶性质的研究   总被引:1,自引:0,他引:1  
利用分光光度计对里氏木霉重组t-PA的性质进行了研究,结果表明该酶对高温较为敏感,60℃酶完全失活;在pH6.4~7.6范围内,作用时间的长短对酶活力影响不大,保持较大的酶活;Zn2+和Fe3+离子对其有抑制的作用,Mg2+、Ca2+、Cu2+、Fe2+、Mn2+、Na+、K+对酶有激活的作用。  相似文献   

20.
筛选适宜里氏木霉FS10-C菌株固体发酵的基质,并优化其发酵基本条件,以期为将该菌株应用于土壤重金属污染修复中奠定基础。采用单因素试验对固体发酵基质进行筛选,在筛选结果的基础上,再运用正交试验设计初步确定适宜的发酵条件,并在50 L固体发酵罐中进行放大试验。结果表明,桔皮麦麸混合物为木霉FS10-C的最佳发酵基质,优化后的平皿固体发酵条件为:桔皮、麦麸按1∶1比例配伍,固水比为1∶1.2,接种量为5%,发酵温度为28℃,发酵14 d后产孢量可高达2.43×1010 CFU/g,且应用于固体发酵罐中发酵效果良好,产孢量达到1.44×1010 CFU/g。通过对固体发酵基质的筛选和发酵条件的优化,可实现木霉FS10-C的高密度培养,降低制剂成本,具有规模化生产的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号