共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state. 相似文献
2.
The flavoenzyme Ero1p produces disulfide bonds for oxidative protein folding in the endoplasmic reticulum. Disulfides generated de novo within Ero1p are transferred to protein disulfide isomerase and then to substrate proteins by dithiol-disulfide exchange reactions. Despite this key role of Ero1p, little is known about the mechanism by which this enzyme catalyzes thiol oxidation. Here, we present the X-ray crystallographic structure of Ero1p, which reveals the molecular details of the catalytic center, the role of a CXXCXXC motif, and the spatial relationship between functionally significant cysteines and the bound cofactor. Remarkably, the Ero1p active site closely resembles that of the versatile thiol oxidase module of Erv2p, a protein with no sequence homology to Ero1p. Furthermore, both Ero1p and Erv2p display essential dicysteine motifs on mobile polypeptide segments, suggesting that shuttling electrons to a rigid active site using a flexible strand is a fundamental feature of disulfide-generating flavoenzymes. 相似文献
3.
4.
Conformation, stability, and folding of interleukin 1 beta 总被引:4,自引:0,他引:4
Recombinant human interleukin 1 beta has been studied in solution with respect to its conformation, stability, and characteristics of unfolding and refolding. It is an all-beta-type, stable globular protein with a high cooperativity under conditions where refolding is reversible. The tryptophan residue is approximately 40% exposed to solvent, and the four tyrosines are 50% exposed. The fluorescence of the single tryptophan residue is quenched at pH 7.5 but dequenched by high salt, by titration to lower pH with a pK of 6.59, and by denaturants, resulting in an unusual biphasic change in fluorescence on unfolding. Both histidine and thiol residues have been excluded as being responsible for the pH dependence of fluorescence by site-directed mutagenesis and by chemical modification, respectively. The likely candidate is an aspartate or glutamate. 相似文献
5.
Biosynthetic folding, beginning with the growing nascent chain and leading to the biologically active structure within its proper cellular context, is one function shared by all proteins. We show that the bacterial luciferase beta subunit reaches its final native form in the alphabeta heterodimer much more rapidly during biosynthetic folding than during refolding from urea. The rate of formation of active enzyme is determined by a short-lived folding intermediate, which is able to associate with the alpha subunit very rapidly following release from the ribosome. This intermediate appears to involve a transient interaction of the C-terminal region of the beta subunit, a region distant from the subunit interface, but intimately involved in heterodimerization. Refolding of the beta subunit under similar conditions proceeds much more slowly. We have characterized both pathways and show that the basic difference between biosynthetic folding and refolding from urea is that the newly synthesized beta subunit enters the folding pathway at a point beyond the slow, rate-determining step that limits the rate of the renaturation process and constitutes a kinetic trap. This mechanism embodies a major strategy, the avoidance of slow-folding intermediates and kinetic traps, that may be employed by many proteins to achieve fast and efficient biosynthetic folding. 相似文献
6.
R Cocco G Stenberg B Dragani D Rossi Principe D Paludi B Mannervik A Aceto 《The Journal of biological chemistry》2001,276(34):32177-32183
An N-capping box and a hydrophobic staple motif are strictly conserved in the core of all known glutathione S-transferases (GST). In the present work, mutations of hGSTA1-1 enzyme residues forming these motifs have been generated. The analysis of S154A, D157A, and S154A/D157A capping mutants indicate that the removal of this local signal destabilizes the protein. The fact that the third helical residue D157A mutation (N-3) was much more destabilizing than the first helical residue S154A mutation (N-cap) suggests that the appropriate conformation of the conserved substructure formed by the alpha 6-helix and preceding loop (GST motif II) is crucial for the overall protein stability. The refolding study of GSTA1-1 variants supports the prediction that this subdomain could represent a nucleation site of refolding. The analysis of L153A, I158A, L153G, and L153A/I158A hydrophobic staple mutants indicate that the removal of this motif destabilizes the GSTA1-1 structure as well as its refolding transition state. The hydrophobic staple interaction favors essential inter-domain contacts and, thereby, in contrast to capping interactions, accelerates the enzyme reactivation. Its strict conservation in the GST system supports the suggestion that this local signal could represent an evolutionarily conserved determinant for rapid folding. 相似文献
7.
The essential flavoenzyme Ero1p both creates de novo disulfide bonds and transfers these disulfides to the folding catalyst protein disulfide isomerase (PDI). The recently solved crystal structure of Ero1p, in combination with previous biochemical, genetic and structural data, provides insight into the mechanism by which Ero1p accomplishes these tasks. A comparison of Ero1p with the smaller flavoenzyme Erv2p highlights important structural elements that are shared by these flavin adenine dinucleotide (FAD)-binding sulfhydryl oxidases and suggests some general themes that might be common to proteins that generate disulfide bonds. 相似文献
8.
The major light-harvesting protein of photosystem II (LHCIIb) is the most abundant chlorophyll-binding protein in the thylakoid membrane. It contains three membrane-spanning alpha helices; the first and third one closely interact with each other to form a super helix, and all three helices bind most of the pigment cofactors. The protein loop domains connecting the alpha helices also play an important role in stabilizing the LHCIIb structure. Single amino acid exchanges in either loop were found to be sufficient to significantly destabilize the complex assembled in vitro [Heinemann, B., and Paulsen, H. (1999) Biochemistry 38, 14088-14093. Mick, V., Eggert, K., Heinemann, B., Geister, S., and Paulsen, H (2004) Biochemistry 43, 5467-5473]. This work presents an analysis of such point mutations in the lumenal loop with regard to the extent and nature of their effect on LHCIIb stability to obtain detailed information on the contribution of this loop to stabilizing the complex. Most of the mutant proteins yielded pigment-protein complexes if their reconstitution and/or isolation was performed under mild conditions; however, the yields were significantly different. Several mutations in the vicinity of W97 in the N-proximal section of the loop gave low reconstitution yields even under very mild conditions. This confirms our earlier notion that W97 may be of particular relevance in stabilizing LHCIIb. The same amino acid exchanges accelerated thermal complex dissociation in the absence of lithium dodecyl sulfate (LDS) and raised the accessibility of the lumenal loop to protease; both effects were well correlated with the reduction in reconstitution yields. We conclude that a detachment of the lumenal loop is a possible first step in the dissociation of LHCIIb. Dramatically reduced complex yields in the presence but not in the absence of LDS were observed for some but not all mutants, particularly those near the C-proximal end of the loop. We conclude that complex stabilities in the absence and in the presence of LDS do not correlate and most likely are determined by different structural characteristics, at least in LHCIIb but maybe also in other membrane proteins. 相似文献
9.
The equilibrium unfolding transitions for the human M form of alpha 1-antitrypsin have been determined using a number of techniques reflecting changes in tryptophan fluorescence lifetime and quenching, exposure of tryptophan to solvent, secondary structure and the Stokes' radius of the protein. The denaturation curves are more complex than is usual for globular proteins and indicate the presence of multiple equilibrium intermediates in the presence of denaturant. This is in marked contrast to the more co-operative transition of the cleaved inhibitor. In addition, a recombinant non-glycosylated alpha 1-antitrypsin has been shown to have a closely similar conformation to the human M protein and to exhibit very similar reversible unfolding transitions, and hence similar stability and co-operativity. Differences in tryptophan environment are reflected in the dequenching of tryptophan fluorescence and reduced asymmetry in the near ultraviolet circular dichroism of the non-glycosylated protein, suggesting direct interaction of glycosyl residues with a tryptophan. Both the M type and the recombinant protein exhibit similar patterns of folding, with rapid collapse to a compact intermediate reminiscent of the widely observed molten globule state that folds more slowly to the native protein. The papain-cleaved M form also folds through a similar compact state in the absence of the C-terminal peptide that results from cleavage. It is concluded that part of the C-terminal 36 residue peptide interacts strongly with the main body of the protein in the folded inhibitor. This interaction will also be important during early stages of folding of the intact protein to direct the folding pathway. The lack of glycosylation leads to an increase in aggregation of the recombinant protein upon refolding, especially after extended denaturation times. The more rapid turnover of the recombinant protein in vivo is shown not to be due to a lower thermodynamic stability, but may be associated with a lower kinetic stability arising from the increased tendency to aggregation. 相似文献
10.
Amyloid deposits are frequently formed by mutant proteins that have a lower stability than the wild-type proteins. Some reports, however, have shown that mutant-induced thermodynamic destabilization is not always a general mechanism of amyloid formation. To obtain a better understanding of the mechanism of amyloid fibril formation, we show in this study that equilibrium and kinetic refolding-unfolding reaction experiments with two amyloidogenic mutant human lysozymes (I56T and D67H) yield folding pathways that can be drawn as Gibbs energy diagrams. The equilibrium stabilities between the native and denatured states of both mutant proteins were decreased, but the degrees of instability were different. The Gibbs energy diagrams of the folding process reveal that the Gibbs energy change between the native and folding intermediate states was similar for both proteins, and also that the activation Gibbs energy change from the native state to the transition state decreased. Our results confirm that the tendency to favor the intermediate of denaturation facilitates amyloid formation by the mutant human lysozymes more than equilibrium destabilization between the native and completely denatured states does. 相似文献
11.
Investigating the relative importance of protein stability, function, and folding kinetics in driving protein evolution has long been hindered by the fact that we can only compare modern natural proteins, the products of the very process we seek to understand, to each other, with no external references or baselines. Through a large-scale all-atom simulation of protein evolution, we have created a large diverse alignment of SH3 domain sequences which have been selected only for native state stability, with no other influencing factors. Although the average pairwise identity between computationally evolved and natural sequences is only 17%, the residue frequency distributions of the computationally evolved sequences are similar to natural SH3 sequences at 86% of the positions in the domain, suggesting that optimization for the native state structure has dominated the evolution of natural SH3 domains. Additionally, the positions which play a consistent role in the transition state of three well-characterized SH3 domains (by phi-value analysis) are structurally optimized for the native state, and vice versa. Indeed, we see a specific and significant correlation between sequence optimization for native state stability and conservation of transition state structure. 相似文献
12.
Doig AJ Andrew CD Cochran DA Hughes E Penel S Sun JK Stapley BJ Clarke DT Jones GR 《Biochemical Society symposium》2001,(68):95-110
Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content. 相似文献
13.
Salt contribution to RNA tertiary structure folding stability 总被引:2,自引:0,他引:2
Accurate quantification of the ionic contribution to RNA folding stability could greatly enhance our ability to understand and predict RNA functions. Recently, motivated by the potential importance of ion correlation and fluctuation in RNA folding, we developed the tightly bound ion (TBI) model. Extensive experimental tests showed that the TBI model can lead to better treatment of multivalent ions than the Poisson-Boltzmann equation. In this study, we use the model to quantify the contribution of salt (Na+ and Mg2+) to the RNA tertiary structure folding free energy. Folding of the RNA tertiary structure often involves intermediates. We focus on the folding transition from an intermediate state to the native state, and compute the electrostatic folding free energy of the RNA. Based on systematic calculations for a variety of RNA molecules, we derive a set of formulas for the electrostatic free energy for tertiary structural folding as a function of the sequence length and compactness of the RNA and the Na+ and Mg2+ concentrations. Extensive comparisons with experimental data suggest that our model and the extracted empirical formulas are quite reliable. 相似文献
14.
The small size and lack of disulphide bonds or cofactors in the Histidine-containing phosphocarrier protein (HPr) makes it an attractive system with which to study structure, interaction to its enzymatic partners, and its stability and folding. Here we give an overview on the immense work that has been performed on this protein and we will show that HPr has been widely used as a model protein to study important aspects in modern Structural Biology. 相似文献
15.
A cytochrome c kinetic folding intermediate was studied by hydrogen exchange (HX) pulse labeling. Advances in the technique and analysis made it possible to define the structured and unstructured regions, equilibrium stability, and kinetic opening and closing rates, all at an amino acid-resolved level. The entire N-terminal and C-terminal helices are formed and docked together at their normal native positions. They fray in both directions from the interaction region, due to a progression in both unfolding and refolding rates, leading to the surprising suggestion that helix propagation may proceed very slowly in the condensed milieu. Several native-like beta turns are formed. Some residues in the segment that will form the native 60s helix are protected but others are not, suggesting energy minimization to some locally non-native conformation in the transient intermediate. All other regions are unprotected, presumably dynamically disordered. The intermediate resembles a partially constructed native state. It is early, on-pathway, and all of the refolding molecules pass through it. These and related results consistently point to distinct, homogeneous, native-like intermediates in a stepwise sequential pathway, guided by the same factors that determine the native structure. Previous pulse labeling efforts have always assumed EX2 exchange during the labeling pulse, often leading to the suggestion of heterogeneous intermediates in alternative parallel pathways. The present work reveals a dominant role for EX1 exchange in the high pH labeling pulse, which will mimic heterogeneous behavior when EX2 exchange is assumed. The general problem of homogeneous versus heterogeneous intermediates and pathways is discussed. 相似文献
16.
Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1. 总被引:2,自引:0,他引:2
下载免费PDF全文

L. M. Mayr D. Willbold O. Landt F. X. Schmid 《Protein science : a publication of the Protein Society》1994,3(2):227-239
The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein. 相似文献
17.
Ludwig T Theissen SM Morton MJ Caplan MJ 《The Journal of biological chemistry》2008,283(51):35410-35418
Membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP-14) drives fundamental physiological and pathological processes, due to its ability to process a broad spectrum of substrates. Because subtle changes in its activity can produce profound physiological effects, MT1-MMP is tightly regulated. Currently, many aspects of this regulation remain to be elucidated. It has recently been discovered that O-linked glycosylation defines the substrate spectrum of MT1-MMP. We hypothesized that a mutual interdependency exists between MT1-MMP trafficking and glycosylation. Lectin precipitation, metabolic labeling, enzymatic deglycosylation, and site-directed mutagenesis studies demonstrate that the LL(572) motif in the cytoplasmic tail of MT1-MMP influences the composition of the complex O-linked carbohydrates attached to the hinge region of the protein. This influence appears to be independent from major effects on cell surface trafficking. MT1-MMP undergoes extensive processing after its synthesis. The origins and the molecular characters of its multiple forms are incompletely understood. Here, we develop and present a model for the sequential, post-translational processing of MT1-MMP that defines stages in the post-synthetic pathway pursued by the protein. 相似文献
18.
Zhou H Brock J Casarotto MG Oakley AJ Board PG 《The Journal of biological chemistry》2011,286(6):4271-4279
The polymorphic deletion of Glu-155 from human glutathione transferase omega1 (GSTO1-1) occurs in most populations. Although the recombinant ΔGlu-155 enzyme expressed in Escherichia coli is active, the deletion causes a deficiency of the active enzyme in vivo. The crystal structure and the folding/unfolding kinetics of the ΔGlu-155 variant were determined in order to investigate the cause of the rapid loss of the enzyme in human cells. The crystal structure revealed altered packing around the Glu-155 deletion, an increase in the predicted solvent-accessible area and a corresponding reduction in the buried surface area. This increase in solvent accessibility was consistent with an elevated Stern-Volmer constant. The unfolding of both the wild type and ΔGlu-155 enzyme in urea is best described by a three-state model, and there is evidence for the more pronounced population of an intermediate state by the ΔGlu-155 enzymes. Studies using intrinsic fluorescence revealed a free energy change around 14.4 kcal/mol for the wild type compared with around 8.6 kcal/mol for the ΔGlu-155 variant, which indicates a decrease in stability associated with the Glu-155 deletion. Urea induced unfolding of the wild type GSTO1-1 was reversible through an initial fast phase followed by a second slow phase. In contrast, the ΔGlu-155 variant lacks the slow phase, indicating a refolding defect. It is possible that in some conditions in vivo, the increased solvent-accessible area and the low stability of the ΔGlu-155 variant may promote its unfolding, whereas the refolding defect limits its refolding, resulting in GSTO1-1 deficiency. 相似文献
19.
Wujek P Kida E Walus M Wisniewski KE Golabek AA 《The Journal of biological chemistry》2004,279(13):12827-12839
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286. 相似文献
20.
Helicobacter pylori is well known as the primary cause of gastritis, duodenal ulcers, and gastric cancer. The pathogenic bacteria produces Lewis x and Lewis y epitopes in the O-antigens of lipopolysaccharides to mimic the carbohydrate antigens of gastric epithelial cells to avoid detection by the host's immune system. The enzyme alpha1,3-fucosyltransferase from H. pylori catalyzes the glycosyl addition of fucose from the donor GDP-fucose to the acceptor N-acetyllactosamine. The poor solubility of the enzyme was resolved by systematic deletion of the C-terminus. We report here the first structural analysis using CD spectroscopy and analytical ultracentrifugation. The results indicate that up to 80 residues, including the tail rich in hydrophobic and positively charged residues (sequence 434-478) and 5 of the 10 tandem repeats of 7 amino acids each (399-433), can be removed without significant change in structure and catalysis. Half of the heptad repeats are required to maintain both the secondary and native quaternary structures. Removal of more residues in the C-terminus led to major structural alteration, which was correlated with the loss of enzymatic activity. In accordance with the thermal denaturation studies, the results support the idea that a higher number of tandem repeats functioning to facilitate a dimeric structure helps to prevent the protein from unfolding during incubation at higher temperatures. 相似文献