首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

2.
A digalactosyl ononitol was isolated from seeds of adzuki bean (Vigna angularis [Willd.] Ohwi et Ohasi). Analysis of hydrolysis products and NMR spectroscopy established its structure as O-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->3)-4-O-methyl-D-myo-inositol.  相似文献   

3.
Lipopolysaccharide was extracted from cells of Salmonella enterica serovar Toucra O48 and, after mild acid hydrolysis (1% AcOH, 1 h, 100 degrees C or 0.1 M NaOH-AcOH, pH 4.5, 5 h, 100 degrees C), the O-specific polysaccharide was isolated and characterized. The core and an oligosaccharide containing a fragment of the repeating unit linked to the core region were also obtained, depending on hydrolysis conditions. On the basis of sugar and methylation analyses and NMR spectroscopy of the hydrolysis products, the biological repeating unit of the O-specific polysaccharide was shown to be the following trisaccharide: -->4)-alpha-Neup5Ac(2-->3)-L-alpha-FucpNAc(1-->3)-D-beta-Glc pNAc(1--> The polysaccharide O-chain was substituted with a single molar equivalent of O-acetyl group, distributed between the Neu5Ac O-9 and O-7 positions, in an approximate ratio of 7 : 3.  相似文献   

4.
A water-soluble glucan was isolated from an edible mushroom, Termitomyces microcarpus. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation and NMR studies ((1)H, (13)C, TOCSY, DQF-COSY, NOESY and HSQC), the repeating unit of the polysaccharide is established as -->4)-alpha--Glcp-(1-->3)-beta--Glcp-(1-->  相似文献   

5.
Hydrolysis of wheat bran and wheat straw by a 20.7 kDa thermostable endoxylanase released 35 and 18% of the cell-wall xylan content, respectively. Separation of the cinnamoyl-oligosaccharides (accounting for 6%) from the bulk of total oligosaccharides was achieved by specific anion-exchange chromatography. The cinnamoyl-oligosaccharides were further purified by preparative paper chromatography (PPC) and their molecular weight was determined by MALDI-TOF mass spectrometry. The partially purified hydrolysis end-products contained from 4 to 16 and from 4 to 12 pentose residues for wheat bran and straw, respectively, and only one cinnamic acid per molecule. The primary structure of the new feruloyl arabinoxylopentasaccharide from wheat bran hydrolysis, which has been determined using 2D NMR spectroscopy, is O-beta-D-xylopyranosyl-(1-->4)-O-[5-O- (feruloyl)-alpha-L-arabinofuranosyl-(1-->3)]-O-beta-D-xylopyranosy l-(1-->4) -O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose.  相似文献   

6.
Modified heparin disaccharides were obtained by the alkaline treatment of a solution containing the disulfated heparin disaccharide DeltaHexA-alpha-(1-->4)-D-GlcNSO(3),6SO(3). Their structures were characterized by one- and two-dimensional NMR spectroscopy: DeltaHexA-alpha-(1-->4)-1,6-anhydro-GlcNSO(3), DeltaHexA-alpha-(1-->4)-1,6-anhydro-ManNSO(3) and DeltaHexA-alpha-(1-->4)-ManNSO(3),6OSO(3). NMR spectroscopy, in combination with HPLC, provided the composition of the mixture. Characteristic NMR signals of the disaccharides were identified, even at low levels, in a high field of (1)H-(13)C correlation NMR spectra (HSQC) of a low molecular weight heparin (LMWH) obtained by beta-elimination (alkaline hydrolysis) of heparin benzyl ester, providing a more complete structural profile of this class of compounds.  相似文献   

7.
Site-directed mutagenesis of the glucansucrase gtf180 gene from Lactobacillus reuteri strain 180 was used to transform the active site region. The alpha-D-glucan ( mEPS-PNNS) produced by the triple mutant V1027P:S1137N:A1139S differed in structure from that of the wild-type alpha-D-glucan ( EPS180). Besides (alpha1-->3) and (alpha1-->6) linkages, as present in EPS180, mEPS-PNNS also contained (alpha1-->4) linkages. Linkage analysis, periodate oxidation, and 1D/2D (1)H NMR spectroscopy of the intact mEPS-PNNS, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of mEPS-PNNS afforded a composite model, which includes all identified structural features.  相似文献   

8.
Isolation and structural analysis of ajugose from Vigna mungo L   总被引:1,自引:0,他引:1  
The hexasaccharide ajugose, alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1<-->2)-beta-D-fructofuranoside, generally uncommon in legumes, was detected in the seeds of Vigna mungo L. by TLC and paper chromatography. Ajugose was then isolated by silica gel chromatography and its structure was established by acid and enzymatic hydrolysis, fast atom bombardment mass spectrometry and both one- and two-dimensional 1H and 13C NMR techniques.  相似文献   

9.
Two digalactosyl D-chiro-inositols and two trigalactosyl D-chiro-inositols, members of the fagopyritol A series and fagopyritol B series, were isolated from buckwheat (Fagopyrum esculentum Moench) seeds. Structures of the first three were determined by 1H and 13C NMR. Fagopyritol B2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->2) -1D-chiro-inositol, and fagopyritol A2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->3)- 1D-chiro-inositol. Fagopyritol A3, a trigalactosyl D-chiro-inositol, is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1 -->6) -alpha-D-galactopyranosyl-(1-->3)- 1 D-chiro-inositol. From analysis of hydrolysis products, the second trigalactosyl D-chiro-inositol, fagopyritol B3, isalpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6) -alpha-D-galactopyranosyl-(1-->2)-1D-chiro-inositol.  相似文献   

10.
Polysaccharides, extracted from the herbs of Chinese natural Solanum lyratum Thunb (SLT), which is a traditional Chinese medicine with hot water and 0.04 M sodium hydroxide successively, were fractionated and purified by ion-exchange and gel-filtration chromatography. According to methylation, periodate oxidation, NMR spectroscopy, partial and graded acid and enzymic hydrolysis analysis, the results indicated the D-glucan to be linear and to contain both (1-->3)- and (1-->4)-linkages. The anomeric NMR and IR spectra measurements confirmed that the sugar residues were beta-glycosidically linked.  相似文献   

11.
The exopolysaccharide, Botryosphaeran, produced by the ligninolytic, ascomyceteous fungus Botryosphaeria sp., was isolated from the extracellular fluid by precipitation with ethanol, and purified by gel permeation chromatography to yield a carbohydrate-rich fraction (96%) composed mainly of glucose (98%). Infra-red and 13C NMR spectroscopy showed that all the glucosidic linkages were in the beta-configuration. Data from methylation analysis and Smith degradation indicated that Botryosphaeran was a (1-->3)-beta-D-glucan with approx 22% side branching at C-6. The products obtained from partial acid hydrolysis demonstrated that the side branches consisted of single (1-->6)-beta-linked glucosyl, and (1-->6)-beta-linked gentiobiosyl residues.  相似文献   

12.
Sugar-beet pulp was de-esterified and submitted to 72 h hydrolysis by 0.1 M HCl at 80 degrees C. Oligomers containing a single glucuronic acid (GlcA) moiety in addition to n(>/= 2) repeats of the dimer -->4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1--> were isolated from the hydrolysate by ion-exchange and gel-permeation. Glycosyl linkage composition analysis and 1H NMR studies indicated that the GlcA was attached to O-3 of a galacturonic acid (GalA) residue, as shown for the two pentamers beta-D-GlcpA-(1-->3)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GalpA-(1-->2)-L-Rhap and alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-[beta-D-GlcpA-(1-->3)]-alpha-D-GalpA-(1-->2)-L-Rhap. Substitution by GlcA was estimated as occurring on one GalA residue out of 72 in the rhamnogalacturonan fraction of the backbone of beet pectins.  相似文献   

13.
The primary structure of the O-antigen of Escherichia coli O116:K+:H10 was shown by monosaccharide analysis, a partial hydrolysis study and by 1D and 2D 1H and 13C NMR spectroscopy to be composed of linear pentasaccharide repeating units with the structure: -->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpNAc-(1-->4)-alpha-D-GalpA++ +-(1-->3)- beta-D-GlcpNAc-(1-->2)-beta-D-Quip4NAc-(1-->.  相似文献   

14.
The neutral exopolysaccharide EPS180 produced from sucrose by the glucansucrase GTF180 enzyme from Lactobacillus reuteri 180 was found to be a (1-->3,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis, periodate oxidation, and 1D/2D 1H and 13C NMR spectroscopy of the intact EPS180, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of EPS180, a composite model, that includes all identified structural features, was formulated as follows: [Formula: see text].  相似文献   

15.
The structure of the O-specific polysaccharide isolated by mild acid hydrolysis of the lipopolysaccharide of Mesorhizobium huakuii IFO15243T was studied using methylation analysis and various one- and two-dimensional 1H and 13C NMR experiments. The O-antigen polysaccharide was found to be linear polymer constituted by a trisaccharide repeating unit of the following structure: --> 2)-alpha-L-6dTalp-(1 --> 3)-alpha-L-6dTalp-(1 --> 2)-alpha-L-Rhap-(1 -->.  相似文献   

16.
The extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83 was found to be composed of D-glucose and D-galactose in a molar ratio of 2:3. The primary structure of the polysaccharide was shown by sugar analysis, methylation analysis, FABMS, partial acid hydrolysis and nuclear magnetic resonance (NMR) spectroscopy to consist of a pentasaccharide repeating unit having the following structure: -->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6 )-alpha-D -Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

17.
1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.  相似文献   

18.
Three complex heteroxylan side-chains acylated with ferulate and one arabinosyl ester of p-coumaric acid have been isolated from maize bran insoluble fibre after acidic hydrolysis and fractionation by gel permeation chromatography and semi-preparative RP-HPLC. The complete structural elucidation of all isolated compounds was achieved by 1D/2D NMR spectroscopy and HPLC-MS in combination with methylation analysis. The absolute configuration of the carbohydrate constituents was determined by chiral GC after acidic hydrolysis and trifluoroacetylation. The identified feruloylated tetrasaccharides alpha-d-xylopyranosyl-(1-->3)-alpha-l-galactopyranosyl-(1-->2)-beta-d-xylopyranosyl-(1-->2)-5-O-trans-feruloyl-l-arabinofuranose (FAXGX) and alpha-d-galactopyranosyl-(1-->3)-alpha-l-galactopyranosyl-(1-->2)-beta-d-xylopyranosyl-(1-->2)-5-O-trans-feruloyl-l-arabinofuranose (FAXGG) are the most complex heteroxylan side-chains from maize bran that have been isolated to date. The isolated trisaccharide alpha-l-galactopyranosyl-(1-->2)-beta-d-xylopyranosyl-(1-->2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG) contributes to the complexity of heteroxylan side-chains from maize bran and 5-O-trans-p-coumaroyl-l-arabinofuranose represents the first p-coumaroylated heteroxylan side-chain isolated from cereal grains. Complex feruloylated heteroxylan side-chains are possibly, like ferulate cross-linking of the heteroxylans and binding of heteroxylans to lignin, a factor contributing to limited enzymatic degradation of fibre.  相似文献   

19.
The chemical structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide (LPS) from Acinetobacter baumannii strain ATCC 19606 was investigated by chemical analysis and NMR spectroscopy of oligosaccharides obtained after deacylation or mild acid hydrolysis. From the combined information the following carbohydrate backbones can be deduced: where R1 = H and R2 = alpha-Glcp-(1-->2)-beta-Glcp-(1-->4)-beta-Glcp-(1-->4)-beta-Glcp-(1 as major and R1 = Ac and R2 = H as minor products. All monosaccharides are d-configured. Also, smaller oligosaccharide phosphates were identified that are thought to represent degradation products of the above structures.  相似文献   

20.
The structure of a linear, acidic exopolysaccharide isolated from the Archaeon Haloferax denitrificans ATCC 35960 has been determined using NMR spectroscopy. The sugar residues in the repeating unit of the polysaccharide were identified as Gal and GlcA2,3NAc after the assignment of the 1H and 13C resonances using COSY, HOHAHA, HMQC and HMQC-TOCSY experiments. The sequence of the residues in the polysaccharide was established from the inter-residue connectivities observed in the HMQC-NOESY plot. The only sugar released on acid hydrolysis was shown to be D-Gal by GLC analysis, while the absolute configuration of the acidic sugars was shown to be D by comparison of the carbon chemical shifts with those of model compounds. Partial acid hydrolysis yielded a tetrasaccharide, terminated by D-Gal at the reducing end, whose structure confirmed that of the repeating unit of the polysaccharide as-->4)-beta-D-GlcpA2,3NAc-(1-->4)-beta-D-GlcpA2, 3NAc-(1-->4)-alpha-D-GlcpA2,3NAc-(1-->3)-alpha-D-Galp- (1-->, where D-GlcpA2,3NAc is 2,3-diacetamido-2,3-dideoxy-D-glucopyranosiduronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号