首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scenarios can help planners and decision makers to think through uncertainties about the future and make decisions that are robust to a variety of possible outcomes. To develop useful scenarios we need to understand the main processes of relevance to the system of interest. Ecological processes, and the feedbacks that they can create between human actions and human well-being, are thought to be important for human societies. Current uncertainties over the long-term resilience of ecosystems and the substitutability of ecosystem goods and services can be translated into three alternative realities: ecosystems may be relatively brittle, relatively resilient, or largely irrelevant. Although these extremes are only rough characterizations of reality, they help us to focus our thinking about the possible outcomes of interactions between humans and the rest of the biosphere. Existing global scenarios can be categorized into a small number of families based on shared themes and assumptions about the future. Considering the internal consistency of four of the main scenario families in relation to the three alternative ecological realities suggests that all existing scenarios make strong, implicit assumptions about the resilience of ecosystems. After a detailed discussion of individual examples, we present a synthesis of the incorporation of ecology in existing scenarios. All current scenarios are inconsistent with at least one possible property of ecosystems and their likely interaction with society. The interrelationships between ecological reality, human views of ecosystems, and social responses to actual and perceived ecological change are complex. For the Millennium Ecosystem Assessment and future scenario exercises, we recommend that essential ecological assumptions should be made explicit to ensure that the details of each scenario are consistent with both the perceived and the actual degree of resilience of ecosystems.  相似文献   

2.
Environmental philosophers spend considerable time drawing the divide between humans and the rest of nature. Some argue that humans and our actions are unnatural. Others allow that humans are natural, but maintain that humans are nevertheless distinct. The motivation for distinguishing humans from the rest of nature is the desire to determine what aspects of the environment should be preserved. The standard view is that we should preserve those aspects of the environment outside of humans and our influence. This paper examines the standard view by asking two questions. First, are the suggested grounds for distinguishing humans from the rest of the environment viable? Second, is such a distinction even needed for determining what to preserve? The paper concludes that debates over whether humans are natural and whether humans are unique are unhelpful when deciding what to preserve.  相似文献   

3.
Lehmann L 《PloS one》2011,6(7):e21437
Intraspecific coalitional aggression between groups of individuals is a widespread trait in the animal world. It occurs in invertebrates and vertebrates, and is prevalent in humans. What are the conditions under which coalitional aggression evolves in natural populations? In this article, I develop a mathematical model delineating conditions where natural selection can favor the coevolution of belligerence and bravery between small-scale societies. Belligerence increases an actor''s group probability of trying to conquer another group and bravery increase the actors''s group probability of defeating an attacked group. The model takes into account two different types of demographic scenarios that may lead to the coevolution of belligerence and bravery. Under the first, the fitness benefits driving the coevolution of belligerence and bravery come through the repopulation of defeated groups by fission of victorious ones. Under the second demographic scenario, the fitness benefits come through a temporary increase in the local carrying capacity of victorious groups, after transfer of resources from defeated groups to victorious ones. The analysis of the model suggests that the selective pressures on belligerence and bravery are stronger when defeated groups can be repopulated by victorious ones. The analysis also suggests that, depending on the shape of the contest success function, costly bravery can evolve in groups of any size.  相似文献   

4.
For centuries, man‐made infrastructure has been viewed as separate from natural systems. Yet in the past few centuries, as the scale and scope of human activities have dramatically increased, there is accumulating evidence that natural systems are becoming increasingly, and in some cases entirely, managed by humans. The dichotomy between infrastructure and the environment is narrowing, and natural systems are increasingly becoming human design spaces. This is already apparent with the management of hydrologic systems for urban water supply, wildlife, agriculture, forests, and even the atmosphere, and we can expect management of the environment to become more so as human activities grow. Yet our infrastructure largely remains obdurate. They are designed to last for long times even as changes in the environment and technology accelerate. As such, our current infrastructure paradigms fail at the level of the complex, integrated systems and behaviors that characterize the Anthropogenic Earth. Infrastructure in the future will need to be designed for adaptive capacity and the complexities associated with techno‐environmental systems.  相似文献   

5.
抗生素在环境中的转归及其生态毒性   总被引:68,自引:2,他引:66  
王冉  刘铁铮  王恬 《生态学报》2006,26(1):265-270
抗生索被长期大量地用于人和动物的疾病治疗,并以亚治疗剂量添加于动物饲料长期用于动物疾病的预防和促进生长,大部分抗生紊不能完全被机体吸收,而有高达85%以上抗生素以原形或代谢物形式经由病人和畜禽粪尿排人环境,经不同途径对土壤和水体造成污染。最近研究显示在城市废水和表面水中检测到了抗生索的存在。但关于抗生素在环境中的分布、迁移和稳定性等的研究资料很少。环境中的抗生素会对环境生态系统包括细菌、水生生物、土壤生物和植物等产生危害,并产生大量耐药菌,对人类健康构成威胁。为评估抗生素在环境中潜在的危害,就抗生素在环境中的分布、转归及对环境和人的危害等方面进行综述,并对今后的研究方向作了探索。  相似文献   

6.
The human life history is characterized by several unusual features, including large babies, late puberty and menopause, and the fact that there is a strong cultural influence on reproductive decisions throughout life. In this review I examine human life history from an evolutionary ecological perspective. I first review the evidence for life history trade-offs between fertility and mortality in humans. Patterns of growth, fertility and mortality across the life span are then discussed and illustrated with data from a traditional Gambian population. After outlining the stages of the human life course, I discuss two phenomena of particular interest in evolutionary anthropology, both of which are apparently unique to humans and neither yet fully understood. First, I discuss the evolution of menopause, the curtailing of female reproduction long before death. The evidence that this evolved because investment in existing children's future reproductive success is more important than continuing child bearing into old age is reviewed, along with data relating to the biological constraints that may be operating. Second, I discuss the demographic transition. Declining fertility at a time of increasingly abundant resources represents a serious challenge to an evolutionary view of human life history and behaviour, and is thus examined in detail. Parental investment in children in competition with each other may be key to understanding both of these unusual human phenomena. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research.  相似文献   

8.
Natural products in crop protection   总被引:1,自引:0,他引:1  
The tremendous increase in crop yields associated with the ‘green’ revolution has been possible in part by the discovery and utilization of chemicals for pest control. However, concerns over the potential impact of pesticides on human health and the environment has led to the introduction of new pesticide registration procedures, such as the Food Quality Protection Act in the United States. These new regulations have reduced the number of synthetic pesticides available in agriculture. Therefore, the current paradigm of relying almost exclusively on chemicals for pest control may need to be reconsidered. New pesticides, including natural product-based pesticides are being discovered and developed to replace the compounds lost due to the new registration requirements. This review covers the historical use of natural products in agricultural practices, the impact of natural products on the development of new pesticides, and the future prospects for natural products-based pest management.  相似文献   

9.
We examined the effects of intraspecific and interspecific competition on demographic processes in the perennial herb Sanicula europaea by manipulating the density of neighbouring plants. We followed the response in terms of survival, growth and reproduction and in terms of seedling recruitment. The demographic data from all phases of the life cycle enabled us to assess also the overall effects of treatments on population growth rate (λ) by transition matrix models. We also decomposed the differences in λ between control and treatments, using life table response experiments (LTRE). To study the effects of competition on recruitment in more detail and to evaluate the role of seed availability, we sowed seeds at different densities with or without vegetation removal.
Vegetative growth and flowering frequency of established individuals was not significantly affected by removal treatments, which suggest no, or a delayed response to released competition. Neighbour removal had no effect on seedling emergence but enhanced recruitment through a higher seedling survival. Conspecific and simultaneous conspecific and heterospecific removal of plants led to an increase in population growth rate (λ), whereas heterospecific removal alone led to a decrease. Emergence of seedlings and fate of vegetative established individuals contributed most to differences in λ between the control and the different treatments. Seed addition enhanced seedling emergence but, as seedling and juvenile survival were density dependent, densities of established individuals appear not to be seed limited.
In S. europaea removal treatments had different effects on established individuals and recruitment. This suggests that studies quantifying the effects of competition over the entire life cycle and performed in a natural environment are necessary to assess the importance of competition in perennial plant populations.  相似文献   

10.
Near future scenarios of long-term and far-reaching manned space missions, require more extensive knowledge of all possible biological consequences of space radiation, particularly in humans, on both a long-term and a short-term basis. In vitro cultured cells have significantly contributed to the tremendous advancement of biomedical research. It is therefore to be expected that simple biological systems such as cultured cells, will contribute to space biomedical sciences. Space represents a novel environment, to which life has not been previously exposed. Both microgravity and space radiation are the two relevant components of such an environment, but biological adaptive mechanisms and efficient countermeasures can significantly minimize microgravity effects. On the other hand, it is felt that space radiation risks may be more relevant and that defensive strategies can only stem from our deeper knowledge of biological effects and of cellular repair mechanisms. Cultured cells may play a key role in such studies. Particularly, thyroid cells may be relevant because of the exquisite sensitivity of the thyroid gland to radiation. In addition, a clone of differentiated, normal thyroid follicular cells (FRTL5 cells) is available in culture, which is well characterized and particularly fit for space research.  相似文献   

11.
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their “depth of computation”) and how often they attempted to incorporate new information about the future rewards (their “recalculation period”). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation.  相似文献   

12.
Protein-based drugs are the fastest growing class of drugs for the treatment of disease in humans and other animals. However, the current method of producing proteins for pharmaceutical application is predicted to fall short because of population growth and demographic trends. This study characterized human dietary risks using quantitative risk assessment techniques for three pharmaceutical proteins produced in field-grown maize. The three proteins were aprotinin, gastric lipase, and Escherichia coli heat-labile enterotoxin B subunit (LT-B). The human dietary risks from the three proteins inadvertently occurring in food were evaluated using three different exposure scenarios so that potential risks could be compared. The three exposure scenarios ranged in conservatism to evaluate the range of risk between the proteins and scenarios. Risk quotients (RQs) were calculated for all three scenarios to integrate exposure and effect (toxicity). The risk assessments revealed that the most conservative scenario produced higher RQs than the other two scenarios. The dietary risks from scenario 1 for aprotinin were three orders of magnitude greater than for scenario 2, and four orders of magnitude greater than for scenario 3. This risk assessment revealed that dietary risks will vary dramatically and depend on factors such as the specific pharmaceutical protein, protein expression, and exposure scenarios. The assessment also reinforced the need for case-by-case assessments.  相似文献   

13.
New biotechnologies such as gene drives and engineered viruses herald a viral era that would give humans exceptional power over any organism at the level of the genotype. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business, Ecology

We are entering a new phase in our relationship with nature: after mechanization, automation and digitalization, a new era of autonomous technical objects is dawning. The most advanced of these technologies are characterized by viral behaviour. The COVID‐19 pandemic has again aptly demonstrated the power of viral systems: not only because of the SARS‐CoV‐2 virus'' ability to jump into and rapidly spread among the human population while wreaking havoc with human societies, but also because some of the vaccines developed against the virus are themselves based on viruses. Both developments give us some ideas of the possible impact of new biotechnologies that aim to create artefacts with viral behaviour in order to shape and control our natural environment. In this essay, the focus is on the use of genetically engineered organisms and the genetic manipulation of wild species. This change has a more direct relationship to our natural environment than autonomous software artefacts such as computer apps or digital viruses that “live” in their artificial “ecosystems” of information‐processing devices. The development of artificial biological systems will therefore require new methods for monitoring and intervention given their potential to autonomously spread within natural ecosystems.  相似文献   

14.
Experimental microbial evolution has focused on the particular ecological scenario where a population is placed suddenly in an environment where its fitness is low, and then adapts while the environment remains stable. In line with this, most microbial evolution studies use fitness measures that report how evolved genotypes fare when competed directly against their own distant ancestor while other studies compare life history traits (such as growth rates) of ancestral and evolved genotypes. This standard way of measuring and reporting changes in fitness has resulted in a consistent body of literature that explains adaptation when populations evolve in this “standard ecological scenario.” Here, I suggest that for experimental evolution to investigate adaptation in other ecological scenarios, such as fluctuating or persistently changing environments, measures of fitness must be expanded such that they not only continue to be comparable between experiments, but also account for evolution and demographic effects in all environments that an evolving lineage experiences. I examine two non-standard measures of fitness—fitness flux and the total number of reproductive events—as potential ways to quantify adaptation by integrating historical information about selection over many environments. This approach could allow us to make quantitative and biologically-meaningful comparisons of adaptation across diverse ecological scenarios. I use the case study of understanding how phytoplankton communities may respond to global change, where environmental variables change continuously, to explore concrete ways of using non-standard fitness measures that consider both demographic effects and selection in changing, rather than in changed, environments.  相似文献   

15.
16.
The ecological footprint concept is important in order to evaluate the human impact on the environment and propose sustainable solutions in our life. By calculating ecological footprint, people could analyze the impact of their lifestyle on the natural environment. The purpose of this study is to share an ecological footprint education module for high school students in order to increase their awareness and understanding related to this concept. This module included theoretical and activity parts and was applied to 140 ninth-grade high school students. Through the activity, students could understand the connection between ecological footprint, bio-capacity, and population and explore how our actions influence our ecological footprint and bio-capacity. Teachers could adapt this ecological footprint education module so that their students could understand the connection between human activities and earth systems.  相似文献   

17.
We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with , the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets.  相似文献   

18.
Parks and nature reserves protect important natural habitats but also provide public opportunities for outdoor recreational activities that may have unintended negative effects on wildlife. We examined the response of eastern massasauga rattlesnakes (Sistrurus catenatus catenatus) to inadvertent disturbance by humans in Killbear Provincial Park, Ontario, Canada. Radio telemetry of 25 adult snakes over two active seasons revealed that, as disturbance increased, gravid females were less visible to observers, but the visibility of non-gravid females and males did not change. Mean distance moved per day decreased and mean time between moves greater than 10 m increased in gravid females, non-gravid females and males with increasing exposure to human disturbance. However, mark-recapture data revealed no differences in the condition or growth rates of snakes, or in the litter size of gravid females, between individuals captured in disturbed and undisturbed study areas. While it is possible that the behavioral responses we observed are not sufficient to have life history consequences, more detailed information on the exposure of individual snakes to human activity is necessary before the conclusion that disturbance is not detrimental to snakes can be accepted. Similarly, other potential negative effects of human disturbance not investigated here remain to be explored.  相似文献   

19.
Identifying regions of the human genome that have been targets of natural selection will provide important insights into human evolutionary history and may facilitate the identification of complex disease genes. Although the signature that natural selection imparts on DNA sequence variation is difficult to disentangle from the effects of neutral processes such as population demographic history, selective and demographic forces can be distinguished by analyzing multiple loci dispersed throughout the genome. We studied the molecular evolution of 132 genes by comprehensively resequencing them in 24 African-Americans and 23 European-Americans. We developed a rigorous computational approach for taking into account multiple hypothesis tests and demographic history and found that while many apparent selective events can instead be explained by demography, there is also strong evidence for positive or balancing selection at eight genes in the European-American population, but none in the African-American population. Our results suggest that the migration of modern humans out of Africa into new environments was accompanied by genetic adaptations to emergent selective forces. In addition, a region containing four contiguous genes on Chromosome 7 showed striking evidence of a recent selective sweep in European-Americans. More generally, our results have important implications for mapping genes underlying complex human diseases.  相似文献   

20.
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号