共查询到20条相似文献,搜索用时 0 毫秒
1.
R. Zerella P. A. Evans J. M. Ionides L. C. Packman B. W. Trotter J. P. Mackay D. H. Williams 《Protein science : a publication of the Protein Society》1999,8(6):1320-1331
The N-terminal 17 residues of ubiquitin have been shown by 1H NMR to fold autonomously into a beta-hairpin structure in aqueous solution. This structure has a specific, native-like register, though side-chain contacts differ in detail from those observed in the intact protein. An autonomously folding hairpin has previously been identified in the case of streptococcal protein G, which is structurally homologous with ubiquitin, but remarkably, the two are not in topologically equivalent positions in the fold. This suggests that the organization of folding may be quite different for proteins sharing similar tertiary structures. Two smaller peptides have also been studied, corresponding to the isolated arms of the N-terminal hairpin of ubiquitin, and significant differences from simple random coil predictions observed in the spectra of these subfragments, suggestive of significant limitation of the backbone conformational space sampled, presumably as a consequence of the strongly beta-structure favoring composition of the sequences. This illustrates the ability of local sequence elements to express a propensity for beta-structure even in the absence of actual sheet formation. Attempts were made to estimate the population of the folded state of the hairpin, in terms of a simple two-state folding model. Using published \"random coil\" values to model the unfolded state, and values derived from native ubiquitin for the putative unique, folded state, it was found that the apparent population varied widely for different residues and with different NMR parameters. Use of the spectra of the subfragment peptides to provide a more realistic model of the unfolded state led to better agreement in the estimates that could be obtained from chemical shift and coupling constant measurements, while making it clear that some other approaches to population estimation could not give meaningful results, because of the tendency to populate the beta-region of conformational space even in the absence of the hairpin structure. 相似文献
2.
Display of peptide libraries on filamentous phage has led to the identification of peptides of the form X(2-5)CX(2)GPXTWXCX(2-5) (where X is a variable residue) that bind to the extra-cellular portion of the erythropoietin receptor (EPO-R). These peptides adopt beta-hairpin conformations when co-crystallized with EPO-R. Solution NMR studies reveal that the peptide is conformationally heterogeneous in the absence of receptor due to cis-trans isomerization about the Gly-Pro peptide bond. Replacement of the conserved threonine residue with glycine at the turn i+3 position produces a stable beta-hairpin conformation in solution, although this peptide no longer has activity in an EPO-R-dependent cell proliferation assay. A truncated form of the EPO-R-binding peptide (containing the i+3 glycine residue) also forms a highly populated, monomeric beta-hairpin. In contrast, phage-derived peptide antagonists of insulin-like growth factor binding protein 1 (IGFBP-1) have a high level of sequence identity with the truncated EPO-R peptide (eight of 12 residues) yet adopt a turn-alpha-helix conformation in solution. Peptides containing all possible pairwise amino acid substitutions between the EPO-R and IGFBP-1 peptides have been analyzed to assess the degree to which the non-conserved residues stabilize the hairpin or helix conformation. All four residues present in the original sequence are required for maximum population of either the beta-hairpin or alpha-helix conformation, although some substitutions have a more dominant effect. The results demonstrate that, within a given sequence, the observed conformation can be dictated by a small subset of the residues (in this case four out of 12). 相似文献
3.
Arnd B.E. Brauer Marco Nievo Jeffrey D. McBride Robin J. Leatherbarrow 《Journal of biomolecular structure & dynamics》2013,31(5):645-655
Abstract Bowman-Birk inhibitors (BBIs) are a well-studied family of canonical inhibitor proteins of serine proteinases. In nature, the active region of BBIs possesses a highly conserved Thr at the P2 position. The importance of this residue has been reemphasized by synthetic BBI reactive site loop proteinomimetics. In particular, this residue was exclusively identified for active chymotrypsin inhibitors selected from a BBI template-assisted combinatorial peptide library. A further kinetic analysis of 26 P2 variant peptides revealed that Thr provides both optimal binding affinity and optimal resistance against enzymatic turnover by chymotrypsin. Herein, we report the H-NMR spectroscopic study of a 5-membered sub-set of these reactive site loop peptides representing a stepwise elimination of the Thr side-chain functionalities and inversion of its side-chain chirality. The P2 Thr variant adopts a three-dimensional structure that closely mimics the one of the corresponding region of the complete protein. This validates the use of this template for the investigation of structure-function relationships. While the overall backbone geometry is similar in all studied variants, conformational changes induced by the modification of the P2 side chain have now been identified and provide a rational explanation of the kinetically observed functional differences. Eliminating the γ-methyl group has little structural effect, whereas the elimination of the γ-oxygen atom or the inversion of the side-chain chirality results in characteristic changes to the intramolecular hydrogen bond network. We conclude that the transannular hydrogen bond between the P2 Thr side-chain hydroxyl and the P5′ backbone amide is an important conformational constraint and directs the hydrophobic contact of the P2 Thr side chain with the enzyme surface in a functionally optimal geometry, both in the proteinomimetic and the native protein. In at least four canonical inhibitor protein families similar structural arrangements for a conserved P2 Thr have been observed, which suggests an analogous functional role. Substitutions at P2 of the proteinomimetic also affect the conformational balance between cis and trans isomers at a distant Pro-Pro motif (P3′-P4′). Presented with a mixture of cis/trans isomers chymotrypsin appears to interact preferably with the conformer that retains the cis-P3′ Pro-trans-P4′ Pro geometry found in the parent BBI protein. 相似文献
4.
Santiveri CM Rico M Jiménez MA 《Protein science : a publication of the Protein Society》2000,9(11):2151-2160
Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding. 相似文献
5.
Syud FA Stanger HE Mortell HS Espinosa JF Fisk JD Fry CG Gellman SH 《Journal of molecular biology》2003,326(2):553-568
We describe experiments that probe whether antiparallel beta-sheet secondary structure becomes more stable as the number of strands increases. Several groups, including ours, have explored this issue with peptides designed to adopt three-stranded beta-sheet conformations, but the conclusions have not been consistent. In this study, we examine the effect on conformational stability of beta-sheet lengthening perpendicular to the strand direction via analysis of designed peptides that adopt three-stranded or four-stranded antiparallel beta-sheet conformations in aqueous solution. The findings reported here, along with the context provided by earlier studies, suggest that antiparallel beta-sheet does, in general, become more stable when the number of strands is increased from two to three. We show that this conclusion is not influenced by the rigidity of the loop segment used to link adjacent beta-strands (D-Pro-Gly versus Asn-Gly). We show that further extension, from three strands to four, leads to a further increase in antiparallel beta-sheet stability. 相似文献
6.
The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously. 相似文献
7.
Chen PY Lin CK Lee CT Jan H Chan SI 《Protein science : a publication of the Protein Society》2001,10(9):1794-1800
The designed peptide (denoted 20-mer, sequence VFITS(D)PGKTYTEV(D)PGOKILQ) has been shown to form a three-strand antiparallel beta-sheet. It is generally believed that the (D)Pro-Gly segment has the propensity to adopt a type II' beta-turn, thereby promoting the formation of this beta-sheet. Here, we replaced (D)Pro-Gly with Asp-Gly, which should favor a type I' turn, to examine the influence of different type of turns on the stability of the beta-sheet. Contrary to our expectation, the mutant peptide, denoted P6D, forms a five-residue type I turn plus a beta-bulge between the first two strands due to a one amino-acid frameshift in the hydrogen bonding network and side-chain inversion of the first beta-strand. In contrast, the same kind of substitution at (D)Pro-14 in the double mutant, denoted P6DP14D, does not yield the same effect. These observations suggest that the SDGK sequence disfavors the type I' conformation while the VDGO sequence favors a type I' turn, and that the frameshift in the first strand provides a way for the peptide to accommodate a disfavored turn sequence by protruding a bulge in the formation of the beta-hairpin. Thus, different types of turns can affect the stability of a beta-structure. 相似文献
8.
Fernández-Escamilla AM Ventura S Serrano L Jiménez MA 《Protein science : a publication of the Protein Society》2006,15(10):2278-2289
A good approach to test our current knowledge on formation of protein beta-sheets is de novo protein design. To obtain a three-stranded beta-sheet mini-protein, we have built a series of chimeric peptides by taking as a template a previously designed beta-sheet peptide, Betanova-LLM, and incorporating N- and/or C-terminal extensions taken from WW domains, the smallest natural beta-sheet domain that is stable in absence of disulfide bridges. Some Betanova-LLM strand residues were also substituted by those of a prototype WW domain. The designed peptides were cloned and expressed in Escherichia coli. The ability of the purified peptides to adopt beta-sheet structures was examined by circular dichroism (CD). Then, the peptide showing the highest beta-sheet population according to the CD spectra, named 3SBWW-2, was further investigated by 1H and 13C NMR. Based on NOE and chemical shift data, peptide 3SBWW-2 adopts a well defined three-stranded antiparallel beta-sheet structure with a disordered C-terminal tail. To discern between the contributions to beta-sheet stability of strand residues and the C-terminal extension, the structural behavior of a control peptide with the same strand residues as 3SBWW-2 but lacking the C-terminal extension, named Betanova-LYYL, was also investigated. beta-Sheet stability in these two peptides, in the parent Betanova-LLM and in WW-P, a prototype WW domain, decreased in the order WW-P > 3SBWW-2 > Betanova-LYYL > Betanova-LLM. Conclusions about the contributions to beta-sheet stability were drawn by comparing structural properties of these four peptides. 相似文献
9.
The N-terminal beta-hairpin sequence of ubiquitin has been implicated as a folding nucleation site. To extend and stabilise the ubiquitin folding nucleus, we have inserted an autonomously folding 14-residue peptide sequence beta4 which in isolation forms a highly populated beta-hairpin (>70%) stabilised by local interactions. NMR structural analysis of the ubiquitin mutant (Ubeta4) shows that the hairpin finger is fully structured and stabilises ubiquitin by approximately 8kJmol(-1). Protein engineering and kinetic (phi(F)-value) analysis of a series of Ubeta4 mutants shows that the hairpin extension of Ubeta4 is also significantly populated in the transition state (phi(F)-values >0.7) and has the effect of templating the formation of native contacts in the folding nucleus of ubiquitin. However, at low denaturant concentrations the chevron plot of Ubeta4 shows a small deviation from linearity (roll-over effect), indicative of the population of a compact collapsed state, which appears to arise from over-stabilisation of local interactions. Destabilising mutations within the native hairpin sequence and within the engineered hairpin extension, but not elsewhere, eliminate this non-linearity and restore apparent two-state behaviour. The pitfall to stabilising local interactions is to present hurdles to the rapid and efficient folding of small proteins down a smooth folding funnel by trapping partially folded or misfolded states that must unfold or rearrange before refolding. 相似文献
10.
Solid-state NMR spectroscopy is used to determine the membrane-bound topological structure of a cationic β-hairpin antimicrobial peptide in which the number of Arg residues has been halved. The parent peptide, PG-1, was previously found to form transmembrane β-barrels in anionic membranes where the Arg residues complex with the lipid phosphate groups to cause toroidal pore defects in the membrane. In comparison, the charge-attenuated and less active mutant studied here forms β-sheets that lie on the surface of the zwitterionic membrane and only partially insert into the anionic membrane. The mutant also exhibits much looser contact with the lipid headgroups. These results indicate that transmembrane insertion and tight Arg-phosphate association are two important elements for strong antimicrobial activities of this class of peptides. Comparison with other β-hairpin antimicrobial peptides studied so far further suggests a relative potency scale for the various mechanisms of action for the β-sheet family of antimicrobial peptides. The transmembrane insertion-toroidal pore mechanism is the most potent in disrupting the lipid bilayer, followed by the large-amplitude in-plane motional mechanism. The carpet model, where peptides aggregate on the membrane surface to cause lateral expansion and eventual micellization of the membrane, is a weaker mechanism of action. 相似文献
11.
There are frequent contacts between aromatic rings and sulfur atoms in proteins. However, it is unclear to what degree this putative interaction is stabilizing and what the nature of the interaction is. We have investigated the aryl-sulfur interaction by placing a methionine residue diagonal to an aromatic ring on the same face of a beta-hairpin, which places the methionine side chain in close proximity to the aryl side chain. The methionine (Met)-aryl interaction was compared with an equivalent hydrophobic and cation-pi interaction in the context of the beta-hairpin. The interaction between phenylalanine (Phe), tryptophan (Trp), or cyclohexylalanine (Cha) and Met stabilized the beta-hairpin by -0.3 to -0.5 kcal mole(-1), as determined by double-mutant cycles. The peptides were subjected to thermal denaturations that suggest a hydrophobic driving force for the interactions between Met and Trp or Cha. The observed interaction of Met or norleucine (Nle) with Trp or Cha are quite similar, implying a hydrophobic driving force for the Met-pi interaction. However, the thermodynamic data suggest that there may be some differences between the interaction of Met with Trp and Phe and that there may be a small thermodynamic component to the Met...Phe interaction. 相似文献
12.
Peter Mager 《Molecular simulation》2013,39(3):239-247
Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1–42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, simulate the biological potency. 相似文献
13.
M. J. Scanlon R. S. Norton 《Protein science : a publication of the Protein Society》1994,3(7):1121-1124
Anthopleurin-A (AP-A) is a member of a family of sea anemone-derived polypeptides that interact with sodium channels in a voltage-dependent manner, producing a positive inotropic effect on the mammalian heart. There has been considerable interest in this molecule as a lead compound for the development of novel therapeutic agents. Earlier attempts to define the 3-dimensional structure of AP-A were complicated by the fact that it was found to exist in 2 conformations in solution. Using 1H- and 13C-NMR spectroscopy, we have now shown that this conformational heterogeneity arises from cis-trans isomerization about the Gly 40-Pro 41 peptide bond and that in the major form of the protein this peptide bond adopts a cis conformation. Furthermore, the increased sensitivity afforded by higher-field NMR has allowed identification of additional minor conformations of AP-A, the origin of which is presently unknown. We believe there will be many more examples of the detection by high-field NMR of previously unobserved minor conformations of proteins in solution. 相似文献
14.
Backbone and side-chain dynamics of residues in a partially folded beta-sheet peptide from platelet factor-4.
下载免费PDF全文

V. A. Daragan E. E. Ilyina C. G. Fields G. B. Fields K. H. Mayo 《Protein science : a publication of the Protein Society》1997,6(2):355-363
Structurally characterizing partially folded states is problematic given the nature of these transient species. A peptide 20mer, T38AQLIATLKNGRKISLDLQA57 (P20), which has been shown to partially fold in a relatively stable turn/loop conformation (LKNGR) and transient beta-sheet structure, is a good model for studying backbone and side-chain mobilities in a transiently folded peptide by using 13C-NMR relaxation. Here, four residues in P20, A43, T44, G48, and 151, chosen for their positions in or near the loop conformation and for compositional variety, have been selectively 13C-enriched. Proton-coupled and decoupled 13C-NMR relaxation experiments have been performed to obtain the temperature dependencies (278 K to 343 K) of auto- and cross-correlation motional order parameters and correlation times. In order to differentiate sequence-neighbor effects from folding effects, two shorter peptides derived from P20, IATLK (P5) and NGRKIS (P6), were similarly 13C-enriched and investigated. For A43, T44, G48, and 151 residues in P20 relative to those in P5/P6, several observations are consistent with partial folding in P20: (1) C alpha H motional tendencies are all about the same, vary less with temperature, and are relatively more restricted, (2) G48 C alpha H2 phi (t) psi (t) rotations are more correlated, and (3) methyl group rotations are slower and yield lower activation energies consistent with formation of hydrophobic "pockets." In addition, T44 and 151 C beta H mobilities in P20 are more restricted at lower temperature than those of their C alpha H and display significantly greater sensitivity to temperature suggesting a larger enthalpic contribution to side-chain mobility. Moreover, at higher temperatures, side-chain methyls and methylenes in P20 are more motionally restricted than those in P5/P6, suggesting that some type of "folded" or "collapsed" structure remains in P20 for what normally would be considered an "unfolded" state. 相似文献
15.
Santiveri CM Santoro J Rico M Jiménez MA 《Protein science : a publication of the Protein Society》2004,13(4):1134-1147
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a \"flat\" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores. 相似文献
16.
17.
The cross-strand disulfides (CSDs) found in β-hairpin antimicrobial peptides (β-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of β-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the β-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of β-hairpin fold over long simulation times, restraints on the torsion angles might be required. 相似文献
18.
Protein folds are built primarily from the packing together of two types of structures: alpha-helices and beta-sheets. Neither structure is rigid, and the flexibility of helices and sheets is often important in determining the final fold (e.g., coiled coils and beta-barrels). Recent work has quantified the flexibility of alpha-helices using a principal component analysis (PCA) of database helical structures (J. Mol. Bio. 2003, 327, pp. 229-237). Here, we extend the analysis to beta-sheet flexibility using PCA on a database of beta-sheet structures. For sheets of varying dimension and geometry, we find two dominant modes of flexibility: twist and bend. The distributions of amplitudes for these modes are found to be Gaussian and independent, suggesting that the PCA twist and bend modes can be identified as the soft elastic normal modes of sheets. We consider the scaling of mode eigenvalues with sheet size and find that parallel beta-sheets are more rigid than antiparallel sheets over the entire range studied. Finally, we discuss the application of our PCA results to modeling and design of beta-sheet proteins. 相似文献
19.
E. de Alba M. Rico M. A. Jimnez 《Protein science : a publication of the Protein Society》1997,6(12):2548-2560
A series of designed peptides has been analyzed by 1H-NMR spectroscopy in order to investigate the influence of cross-strand side-chain interactions in beta-hairpin formation. The peptides differ in the N-terminal residues of a previously designed linear decapeptide that folds in aqueous solution into two interconverting beta-hairpin conformations, one with a type I turn (beta-hairpin 4:4) and the other with a type I + G1 beta-bulge turn (beta-hairpin 3:5). Analysis of the conformational behavior of the peptides studied here demonstrates three favorable and two unfavorable cross-strand side-chain interactions for beta-hairpin formation. These results are in agreement with statistical data on side-chain interactions in protein beta-sheets. All the peptides in this study form significant populations of the beta-hairpin 3:5, but only some of them also adopt the beta-hairpin 4:4. The formation of beta-hairpin 4:4 requires the presence of at least two favorable cross-strand interactions, whereas beta-hairpin 3:5 seems to be less susceptible to side-chain interactions. A protein database analysis of beta-hairpins 3:5 and beta-hairpins 4:4 indicates that the former occur more frequently than the latter. In both peptides and proteins, beta-hairpins 3:5 have a larger right-handed twist than beta-hairpins 4:4, so that a factor contributing to the higher stability of beta-hairpin 3:5 relative to beta-hairpin 4:4 is due to an appropriate backbone conformation of the type I + G1 beta-bulge turn toward the right-handed twist usually observed in protein beta-sheets. In contrast, as suggested previously, backbone geometry of the type I turn is not adequate for the right-handed twist. Because analysis of buried hydrophobic surface areas on protein beta-hairpins reveals that beta-hairpins 3:5 bury more hydrophobic surface area than beta-hairpins 4:4, we suggest that the right-handed twist observed in beta-hairpin 3:5 allows a better packing of side chains and that this may also contribute to its higher intrinsic stability. 相似文献